scholarly journals Evaluation of a new additive-dominance genomic model and implications for quantitative genetics and genomic selection

2022 ◽  
Vol 79 (6) ◽  
Author(s):  
Taiana Lopes Rangel Miranda ◽  
Marcos Deon Vilela de Resende ◽  
Camila Ferreira Azevedo ◽  
Andrei Caíque Pires Nunes ◽  
Elizabete Keiko Takahashi ◽  
...  
2016 ◽  
Vol 73 (3) ◽  
pp. 243-251 ◽  
Author(s):  
José Marcelo Soriano Viana ◽  
Hans-Peter Piepho ◽  
Fabyano Fonseca e Silva

2017 ◽  
Vol 74 (1) ◽  
pp. 41-50 ◽  
Author(s):  
José Marcelo Soriano Viana ◽  
Hans-Peter Piepho ◽  
Fabyano Fonseca e Silva

2013 ◽  
Vol 18 (4) ◽  
pp. 936-943
Author(s):  
Yang YU ◽  
Xiaojun ZHANG ◽  
Fuhua LI ◽  
Jianhai XIANG

Author(s):  
Bruce Walsh ◽  
Michael Lynch

Quantitative traits—be they morphological or physiological characters, aspects of behavior, or genome-level features such as the amount of RNA or protein expression for a specific gene—usually show considerable variation within and among populations. Quantitative genetics, also referred to as the genetics of complex traits, is the study of such characters and is based on mathematical models of evolution in which many genes influence the trait and in which non-genetic factors may also be important. Evolution and Selection of Quantitative Traits presents a holistic treatment of the subject, showing the interplay between theory and data with extensive discussions on statistical issues relating to the estimation of the biologically relevant parameters for these models. Quantitative genetics is viewed as the bridge between complex mathematical models of trait evolution and real-world data, and the authors have clearly framed their treatment as such. This is the second volume in a planned trilogy that summarizes the modern field of quantitative genetics, informed by empirical observations from wide-ranging fields (agriculture, evolution, ecology, and human biology) as well as population genetics, statistical theory, mathematical modeling, genetics, and genomics. Whilst volume 1 (1998) dealt with the genetics of such traits, the main focus of volume 2 is on their evolution, with a special emphasis on detecting selection (ranging from the use of genomic and historical data through to ecological field data) and examining its consequences. This extensive work of reference is suitable for graduate level students as well as professional researchers (both empiricists and theoreticians) in the fields of evolutionary biology, genetics, and genomics. It will also be of particular relevance and use to plant and animal breeders, human geneticists, and statisticians.


Author(s):  
Bruce Walsh ◽  
Michael Lynch

One of the major unresolved issues in quantitative genetics is what accounts for the amount of standing genetic variation in traits. A wide range of models, all reviewed in this chapter, have been proposed, but none fit the data, either giving too much variation or too little apparent stabilizing selection.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Emmanuel A. Lozada-Soto ◽  
Christian Maltecca ◽  
Duc Lu ◽  
Stephen Miller ◽  
John B. Cole ◽  
...  

Abstract Background While the adoption of genomic evaluations in livestock has increased genetic gain rates, its effects on genetic diversity and accumulation of inbreeding have raised concerns in cattle populations. Increased inbreeding may affect fitness and decrease the mean performance for economically important traits, such as fertility and growth in beef cattle, with the age of inbreeding having a possible effect on the magnitude of inbreeding depression. The purpose of this study was to determine changes in genetic diversity as a result of the implementation of genomic selection in Angus cattle and quantify potential inbreeding depression effects of total pedigree and genomic inbreeding, and also to investigate the impact of recent and ancient inbreeding. Results We found that the yearly rate of inbreeding accumulation remained similar in sires and decreased significantly in dams since the implementation of genomic selection. Other measures such as effective population size and the effective number of chromosome segments show little evidence of a detrimental effect of using genomic selection strategies on the genetic diversity of beef cattle. We also quantified pedigree and genomic inbreeding depression for fertility and growth. While inbreeding did not affect fertility, an increase in pedigree or genomic inbreeding was associated with decreased birth weight, weaning weight, and post-weaning gain in both sexes. We also measured the impact of the age of inbreeding and found that recent inbreeding had a larger depressive effect on growth than ancient inbreeding. Conclusions In this study, we sought to quantify and understand the possible consequences of genomic selection on the genetic diversity of American Angus cattle. In both sires and dams, we found that, generally, genomic selection resulted in decreased rates of pedigree and genomic inbreeding accumulation and increased or sustained effective population sizes and number of independently segregating chromosome segments. We also found significant depressive effects of inbreeding accumulation on economically important growth traits, particularly with genomic and recent inbreeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Amini ◽  
Felipe Restrepo Franco ◽  
Guiping Hu ◽  
Lizhi Wang

AbstractRecent advances in genomic selection (GS) have demonstrated the importance of not only the accuracy of genomic prediction but also the intelligence of selection strategies. The look ahead selection algorithm, for example, has been found to significantly outperform the widely used truncation selection approach in terms of genetic gain, thanks to its strategy of selecting breeding parents that may not necessarily be elite themselves but have the best chance of producing elite progeny in the future. This paper presents the look ahead trace back algorithm as a new variant of the look ahead approach, which introduces several improvements to further accelerate genetic gain especially under imperfect genomic prediction. Perhaps an even more significant contribution of this paper is the design of opaque simulators for evaluating the performance of GS algorithms. These simulators are partially observable, explicitly capture both additive and non-additive genetic effects, and simulate uncertain recombination events more realistically. In contrast, most existing GS simulation settings are transparent, either explicitly or implicitly allowing the GS algorithm to exploit certain critical information that may not be possible in actual breeding programs. Comprehensive computational experiments were carried out using a maize data set to compare a variety of GS algorithms under four simulators with different levels of opacity. These results reveal how differently a same GS algorithm would interact with different simulators, suggesting the need for continued research in the design of more realistic simulators. As long as GS algorithms continue to be trained in silico rather than in planta, the best way to avoid disappointing discrepancy between their simulated and actual performances may be to make the simulator as akin to the complex and opaque nature as possible.


Sign in / Sign up

Export Citation Format

Share Document