scholarly journals A Timoshenko Piezoelectric Beam Finite Element with Consistent Performance Irrespective of Geometric and Material Configurations

2016 ◽  
Vol 13 (5) ◽  
pp. 992-1015 ◽  
Author(s):  
Litesh N. Sulbhewar ◽  
P. Raveendranath
2021 ◽  
Vol 71 (1) ◽  
pp. 87-106
Author(s):  
Kutiš Vladimír ◽  
Paulech Juraj ◽  
Gálik Gálik ◽  
Murín Justín

Abstract The paper deals with the development of the finite element method (FEM) model of piezoelectric beam elements, where the piezoelectric layers are located on the outer surfaces of the beam core, which is made of functionally graded material. The created FEM model of piezoelectric beam structure is reduced using the modal truncation method, which is one of model order reduction (MOR) method. The results obtain from reduced state-space model are compared with results obtain from finite element model. MOR state-space model is also used in the design of the linear quadratic regulator (LQR). Created reduced state-space model with feedback with the LQR controller is analysed and compared with the results from FEM model.


2015 ◽  
Vol 32 (5) ◽  
pp. 1251-1274 ◽  
Author(s):  
Litesh N Sulbhewar ◽  
P. Raveendranath

Purpose – Piezoelectric extension mode smart beams are vital part of modern control technology and their numerical analysis is an important step in the design process. Finite elements based on First-order Shear Deformation Theory (FSDT) are widely used for their structural analysis. The performance of the conventional FSDT-based two-noded piezoelectric beam formulations with assumed independent linear field interpolations is not impressive due to shear and material locking phenomena. The purpose of this paper is to develop an efficient locking-free FSDT piezoelectric beam element, while maintaining the same number of nodal degrees of freedom. Design/methodology/approach – The governing equations are derived using a variational formulation to establish coupled polynomial field representation for the field variables. Shape functions based on these coupled polynomials are employed here. The proposed formulation eliminates all locking effects by accommodating strain and material couplings into the field interpolation, in a variationally consistent manner. Findings – The present formulation shows improved convergence characteristics over the conventional formulations and proves to be the most efficient way to model extension mode piezoelectric smart beams, as demonstrated by the results obtained for numerical test problems. Originality/value – To the best of the authors’ knowledge, no such FSDT-based finite element with coupled polynomial shape function exists in the literature, which incorporates electromechanical coupling along with bending-extension and bending-shear couplings at the field interpolation level itself. The proposed formulation proves to be the fastest converging FSDT-based extension mode smart beam formulation.


Author(s):  
Emmanuel Beltramo ◽  
Balakumar Balachandran ◽  
Sergio Preidikman

In this paper, the authors introduce a model of a strain-based geometrically nonlinear piezoelectric beam for modeling energy harvesters. A nonlinear shear-underfomable 3-D Rayleigh’s beam theory is used to model the displacement fields and can be considered as an interesting alternative to linear and highly nonlinear models commonly presented in the literature. The nonlinearities are introduced to reproduce the behavior of the flexible structure, since moderate to large displacements can occur in response of external loading conditions. The finite element method is used to model the piezolaminated bimorph configuration. Each finite element consists of two piezoelectric energy harvesters embedded or perfectly bonded to an elastic substrate. The electromechanical coupling includes axial and flexural effects as well as additional term that comes from the nonlinearity incorporated into the strain tensor. Additionally, the authors explore briefly two topics for linear harvesters: the influence of the electric domain on the structural properties and, the performance of the harvester near resonance in term of electric power output of a purely resistive network. As a validation case, a cantilevered piezoelectric energy harvester under base excitation is modeled. Alongside, the response to gust of a harvester embedded in a wing structure is analyzed.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
M. Sanbi ◽  
R. Saadani ◽  
K. Sbai ◽  
M. Rahmoune

Smart structures with integrated sensors, actuators, and control electronics are of importance to the next generation high-performance structural systems. In this study, thermopiezoelastic characteristics of piezoelectric beam continua are studied and applications of the theory to active structures in sensing and optimal control are discussed. Using linear thermopiezoelastic theory and Timoshenko assumptions, a generic thermopiezoelastic theory for piezolaminated composite beam is derived. Finite element equations for the thermopiezoelastic media are obtained by using the linear constitutive equations in Hamilton's principle together with the finite element approximations. The structure consists of a modeling of cantilevered piezolaminated Timoshenko beam with integrated thermopiezoelectric elements between two aluminium layers. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG accompanied by the Kalman filter is applied. The effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. We show that the control procedure cannot be perturbed by applying a thermal gradient and the control can be applied at any time during the period of vibration of the beam.


2013 ◽  
Vol 52 (6) ◽  
pp. 1331-1349 ◽  
Author(s):  
D. Legner ◽  
J. Wackerfuß ◽  
S. Klinkel ◽  
W. Wagner

Sign in / Sign up

Export Citation Format

Share Document