scholarly journals Long-term bond strength of a self-adhesive resin cement to intraradicular dentin pretreated with chlorhexidine and ethanol

2017 ◽  
Vol 46 (2) ◽  
pp. 97-103
Author(s):  
Mariah Carvalho Guimarães dos SANTOS ◽  
Flávia Lucisano Botelho AMARAL ◽  
Cecília Pedroso TURSSI ◽  
Roberta Tarkany BASTING ◽  
Fabiana Mantovani Gomes FRANÇA

Abstract Introduction Self-adhesive resin cements do not require prior preparation of the tooth surface, therefore dentin pretreatments may influence long-term bond strength. Objective To evaluate the influence of 100% ethanol (ET) and 2% chlorhexidine (CL) treatment of intraradicular dentin on the long-term bond strength (BS) of a self-adhesive resin cement (SRC). Material and method 80 bovine roots were restored with fiber posts and SRC (U200 3M/ESPE) and distributed into 4 groups according to dentin treatment: Group 1 – without treatment; Group 2 – 2% CL for 1 minute; Group 3 – 100% ET for 1 minute; Group 4 – 2% CL, followed by 100% ET. The samples were cross-sectioned to obtain two sections (0.7 mm) thick for each root third: coronal, middle and apical. The immediate push-out test was carried out after 48 hours, and the long-term push-out test, after 180 days. Result The three-way ANOVA test for randomized blocks showed no difference between the BS values at 48 hours and 80 days, irrespective of the treatment and the third (p>0.05). The interaction of the treatment/third pairing was significant (p = 0.041) since the treatment with CL promoted lower BS in the coronal third, while treatment with ET promoted better BS in the apical third. Conclusion Treatment with CL and ET, separately or combined, promoted no differences between the BS values of the SRC to root dentin over time.

2020 ◽  
pp. 1-3
Author(s):  
Sonali Bansod ◽  
Ashwini Gaikwad ◽  
Abhijit Jadhav

Aim: To compare the push-out bond strength and modes of failure of fiber post cemented with different adhesive resin cements. Materials and Method: Forty five single rooted teeth were randomly divided into three groups as, group 1- Fluorocore 2+, group 2- Rely-X U200 and group 3-G-Cem, according to the adhesive resin cement used. The roots were subjected to chemo-mechanical preparation and cemented with adhesive resin cement. The teeth were sectioned into slices of the different root thirds and tested for bond strength (push out). Results were analysed using Chi square, Mann Whitney U and Kruskal Wallis test was used to find the significance of study parameters between three or more groups, with p = 0.05 for statistical significance. Result: Push out bond strength of Fluorocore 2+ is significantly higher at coronal level than apical level. No significant difference observed between coronal, middle and apical levels in group 2 and in group 3. Conclusion: Fluorocore 2+ adhesive resin cement is best to use for luting the fibre post. Fluorocore 2+ forms better bonding with post as well as dentin proving its better efficiency clinically.


2015 ◽  
Vol 14 (3) ◽  
pp. 246-250
Author(s):  
Fabrício Mezzomo Collares ◽  
Vicente Castelo Branco Leitune ◽  
Carolina Rocha Augusto ◽  
Patrícia Franken ◽  
Susana Maria Werner Samuel

2014 ◽  
Vol 39 (4) ◽  
pp. 282 ◽  
Author(s):  
Eduardo Diogo Gurgel-Filho ◽  
Felipe Coelho Lima ◽  
Vicente de Paula Aragão Saboia ◽  
Tauby de Souza Coutinho-Filho ◽  
Aline de Almeida Neves ◽  
...  

2016 ◽  
Vol 45 (4) ◽  
pp. 227-233
Author(s):  
Adriana Rosado Valente ANDRIOLI ◽  
Margareth COUTINHO ◽  
Andréa Araújo de VASCONCELLOS ◽  
Milton Edson MIRANDA

Abstract Introduction The correct use of glass fiber posts in endodontically treated teeth is essential for the clinical success of restorative treatment. Objective This study evaluated the push-out shear bond strength of relined (R) or non-relined (NR) glass fiber posts, cemented with self-adhesive resin cement [RelyXTM U100 (U100)] and conventional resin cement [RelyXTM ARC (ARC)]. Material and method Sixty human single-rooted teeth were endodontically treated and divided into ARC-NR; U100-NR; ARC-R; U100-R groups. The teeth were sectioned into cervical, middle and apical thirds, and subjected to the push-out test. Bond strength was analyzed by the Friedman test; cement and post types were compared by the Mann Whitney test. The pattern of failures was evaluated with digital camera through images at 200x magnification, and was classified as adhesive (at the cement/dentin or cement/post interface), cohesive (cement or post), and mixed failures. Result In ARC-NR, bond strength values were higher in the cervical third; in U100-NR and ARC-R they were similar between the thirds. In U100-R, in the cervical and middle thirds the bond strength values were similar, and there was lower value in the apical third. For non-relined glass fiber posts, the highest mean bond strength values were observed with self-adhesive resin cement. Whereas, relined posts cemented with conventional resin cement had stronger cement layer in comparison with non-relined fiber posts. Conclusion The post relining technique was efficient in ARC-R. ARC-NR and U100-R showed improved bond strength in the cervical region of canal walls. The main failures were adhesive at the cement-post interface.


2020 ◽  
Vol 45 (4) ◽  
pp. E185-E195
Author(s):  
RV Machry ◽  
PE Fontana ◽  
TC Bohrer ◽  
LF Valandro ◽  
OB Kaizer

Clinical Relevance When luting relined fiber posts with self-adhesive cement, the surface treatment of the posts influences the adhesion of the fiber posts to root dentin. SUMMARY This study evaluated the effect of surface treatment and silanization of resin composite on the bond strength of relined fiber posts cemented with self-adhesive resin cement. Push-out and microtensile bond strength (MTBS) tests were performed in this study. The endodontic treatment of 80 single-rooted bovine teeth was first performed in the push- out test segment, followed by weakening the intracanal walls by diamond bur. Then, the glass fiber posts were adapted with resin composite to fill the root canals, followed by photoactivation and resin surface conditioning according to four different experimental conditions: no conditioning as control, 10% hydrofluoric acid, 35% hydrogen peroxide, or air abrasion with alumina particle (all groups were subdivided into “with silanization” or “without silanization,” thus totaling eight experimental groups). Self-adhesive resin cement was used for the post cementation. Four slices per tooth were obtained for the push-out tests. Next, 160 blocks of resin composite were first produced for the MTBS tests; their bonding surfaces were conditioned (as mentioned, ie, eight treatments), and they were cemented to each other. The 80 sets (n=10/treatment) were then cut into microbars (16/set): eight were immediately tested, while the other eight were thermocycled (12,000×) and stored (120 days) before MTBS. Failure modes and topographic analyses were performed after treatments. There was no statistically significant difference for the push-out results. In MTBS, surface treatment and silanization had a significant effect (p<0.001). Aging decreased bond strength for all groups. Considering the aged groups, air abrasion promoted the highest values and silanization improved bond strength for all treatments except air abrasion. The alumina particle air abrasion of the relining resin composite promoted the highest bond strengths when luting with self-adhesive resin cement.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Adricyla Teixeira Rocha ◽  
Leticia Machado Gonçalves ◽  
Ana Júlia de Carvalho Vasconcelos ◽  
Etevaldo Matos Maia Filho ◽  
Ceci Nunes Carvalho ◽  
...  

Aim. The aim of the study was to evaluate, by means of the push-out test, the effect of the anatomical customization of the fiber post on the bond strength of a self-adhesive resin cement. Methods. Twelve endodontically treated, human, upper central incisors were randomly divided into two groups (n=6): control (glass fiber posts cemented with Relyx® U200) and customized (glass fiber posts anatomically customized with translucent composite resin cemented with Relyx U200). The roots were sectioned into three slices, cervical, middle, and apical, and photographed with a digital camera attached to a stereomicroscopic loupe. The images were analyzed by software, for evaluation of the cement line. The slices were subsequently submitted to the push-out test until the post had completely extruded, and the fracture mode was analyzed with a stereomicroscopic loupe. Results. The results showed significant differences between the groups in the different root thirds in relation to the area occupied by air bubbles (p<0.05). Bond strength, when all the thirds are considered, was 8.77 ± 4.89 MPa for the control group and 16.96 ± 4.85 MPa for the customized group. Conclusion. The customized group showed greater bond resistance than the control group and a more uniform cement layer.


Sign in / Sign up

Export Citation Format

Share Document