dentin adhesive
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 24)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 48 (4) ◽  
pp. 367-375
Author(s):  
Haeni Kim ◽  
Howon Park ◽  
Juhyun Lee ◽  
Hyunwoo Seo

This study evaluated the fluoride release of alkasite restorative material (ARM) and giomer penetrating the dentin adhesive layer. Twenty specimens were prepared for each restorative material, and dentin adhesive with uniform thickness was applied to half of them. The prepared specimens were placed in a polyethylene tube containing 2.0 mL of deionized water and deposited in a 37.0°C water bath for the study duration. The amount of fluoride release was measured on the 1st, 3rd, 7th, 14th, 21st, and 28th days after deposition. The dentin adhesive applied to the ARM and giomer could not completely block the fluoride release; however, it significantly reduced its amount. The cumulative amount of fluoride release of the ARM after 28 days was higher than that of the giomer regardless of the application of dentin adhesive.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5423
Author(s):  
Hyun-Jung Kim ◽  
Ji-Hyun Jang ◽  
Sang Uk Woo ◽  
Kyoung-Kyu Choi ◽  
Sun-Young Kim ◽  
...  

This study aimed to evaluate the effect of a novel bioactive glass (BAG)-containing dentin adhesive on the permeability of demineralized dentin. Bioactive glass (85% SiO2, 15% CaO) was fabricated using the sol-gel process, and two experimental dentin adhesives were prepared with 3 wt% silica (silica-containing dentin adhesive; SCA) or BAG (BAG-containing dentin adhesive; BCA). Micro-tensile bond strength (μTBS) test, fracture mode analysis, field-emission scanning electron microscopy (FE-SEM) analysis of adhesive and demineralized dentin, real-time dentinal fluid flow (DFF) rate measurement, and Raman confocal microscopy were performed to compare SCA and BCA. There was no difference in μTBS between the SCA and BCA (p > 0.05). Multiple precipitates were evident on the surface of the BCA, and partial occlusion of dentinal tubules was observed in FE-SEM of BCA-approximated dentin. The DFF rate was reduced by 50.10% after BCA approximation and increased by 6.54% after SCA approximation. Raman confocal spectroscopy revealed an increased intensity of the hydroxyapatite (HA) peak on the dentin surface after BCA application. The novel BAG-containing dentin adhesive showed the potential of both reducing dentin permeability and dentin remineralization.


Author(s):  
Eman M. AlHamdan ◽  
Samar Al‐Saleh ◽  
Mohammad H. AlRefeai ◽  
Imran Farooq ◽  
Eisha Abrar ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1903
Author(s):  
Abdullah S. Aljamhan ◽  
Mohammad H. Alrefeai ◽  
Alhanouf Alhabdan ◽  
Sarah A. Alhusseini ◽  
Imran Farooq ◽  
...  

The study aimed to analyze the effect of the addition of nano-hydroxyapatite (nano-HA) particles on the mechanical properties of experimental adhesive (EA). Furthermore, dentin interaction of EA (without nano-HA) and EA with nano-HA (hereon referred to as HA-10%) were also investigated and equated. Methods consisting of scanning electron microscopy (SEM)–energy-dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy, micro-tensile bond strength (µTBS) test, and Fourier transform infrared (FTIR) spectroscopy were employed to study nano-HA particles shape, dentin bond strength, degree of conversion (DC), and adhesive–dentin interaction. Ninety teeth (N = 90) were collected, and pre-bonding, conditioning of dentin was performed utilizing phosphoric acid (H3PO4) etching, photodynamic therapy (PDT), and ER-CR-YSGG (ECY) laser. The teeth were set to form bonded specimens using two adhesives. Nano-HA particles were spherical-shaped, and EDX confirmed the presence of oxygen, calcium, and phosphorus. Micro-Raman spectroscopy revealed distinct phosphate and carbonate peaks for nano-HA. The µTBS test demonstrated highest values for HA-10% group on the H3PO4 conditioned dentin. The greatest DC was observed for the EA group. The addition of nano-HA-10 wt.% particles in dentin adhesive resulted in improved bond strength. The incorporation also demonstrated acceptable DC (although lower than EA group), suitable dentin interaction, and resin tag formation.


Author(s):  
Umer Daood ◽  
Ammar Abdullah Malik ◽  
Muhammad Sharjeel Ilyas ◽  
Asrar Ahmed ◽  
Syed Saad B. Qasim ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1093
Author(s):  
Aasem M. Alhenaki ◽  
Esra A. Attar ◽  
Abdullah Alshahrani ◽  
Imran Farooq ◽  
Fahim Vohra ◽  
...  

The objective of this study was to synthesize and assess unfilled and filled (silica nanoparticles) dentin adhesive polymer. Methods encompassing scanning electron microscopy (SEM)—namely, energy dispersive X-ray spectroscopy (EDX), micro-tensile bond strength (µTBS) test, Fourier transform infrared (FTIR), and micro-Raman spectroscopy—were utilized to investigate Si particles’ shape and incorporation, dentin bond toughness, degree of conversion (DC), and adhesive–dentin interaction. The Si particles were incorporated in the experimental adhesive (EA) at 0, 5, 10, and 15 wt. % to yield Si-EA-0% (negative control group), Si-EA-5%, Si-EA-10%, and Si-EA-15% groups, respectively. Teeth were set to form bonded samples using adhesives in four groups for µTBS testing, with and without aging. Si particles were spherical shaped and resin tags having standard penetrations were detected on SEM micrographs. The EDX analysis confirmed the occurrence of Si in the adhesive groups (maximum in the Si-EA-15% group). Micro-Raman spectroscopy revealed the presence of characteristic peaks at 638, 802, and 1300 cm−1 for the Si particles. The µTBS test revealed the highest mean values for Si-EA-15% followed by Si-EA-10%. The greatest DC was appreciated for the control group trailed by the Si-EA-5% group. The addition of Si particles of 15 and 10 wt. % in dentin adhesive showed improved bond strength. The addition of 15 wt. % resulted in a bond strength that was superior to all other groups. The Si-EA-15% group demonstrated acceptable DC, suitable dentin interaction, and resin tag formation.


2021 ◽  
Vol 9 (02) ◽  
pp. 539-546
Author(s):  
Sreeja S. Nair ◽  
◽  
Amit H. Patil ◽  
Ashish K. Jain ◽  
Sheetal D. Mali ◽  
...  

The advent of dentin adhesive technology in endodontics has made monoblock a well known concept in endodontics. However it has created many controversies on whether monoblock would reinforce the roots and provide a superior coronal seal.In this review, attempts have been made to understand monoblock in a broader aspect and understand how the monoblock concept can be applied to the materials used till date which rehabilitates the root canal space. The potential of currently available bondable materials to achieve mechanically homogeneous units with root dentin is then discussed in relation to the classical concept in which the term monoblock was first employed in restorative dentistry and subsequently in endodontics.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zohaib Akram ◽  
Sultan Aati ◽  
Hein Ngo ◽  
Amr Fawzy

Abstract Background A low pH environment is created due to the production of acids by oral biofilms that further leads to the dissolution of hydroxyapatite crystal in the tooth structure significantly altering the equilibrium. Although the overall bacterial counts may not be eradicated from the oral cavity, however, synthesis of engineered anti-bacterial materials are warranted to reduce the pathogenic impact of the oral biofilms. The purpose of this study was to synthesize and characterize chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSN) grafted with poly-L-glycolic acid (PGA) and to test the in vitro drug release in various pH environments, cytotoxicity, and antimicrobial capacity. In addition, this study aimed to investigate the delivery of CHX-loaded/MSN-PGA nanoparticles through demineralized dentin tubules and how these nanoparticles interact with tooth dentin after mixing with commercial dentin adhesive for potential clinical application. Results Characterization using SEM/TEM and EDX confirmed the synthesis of CHX-loaded/MSN-PGA. An increase in the percentage of drug encapsulation efficiency from 81 to 85% in CHX loaded/MSN and 92–95% in CHX loaded/MSN-PGA proportionately increased with increasing the amount of CHX during the fabrication of nanoparticles. For both time-periods (24 h or 30 days), the relative microbial viability significantly decreased by increasing the CHX content (P < 0.001). Generally, the cell viability percentage of DPSCs exposed to MSN-PGA/Blank, CHX-loaded/MSN, and CHX-loaded/MSN-PGA, respectively was > 80% indicating low cytotoxicity profiles of experimental nanoparticles. After 9 months in artificial saliva (pH 7.4), the significantly highest micro-tensile bond strength value was recorded for 25:50 CHX/MSN and 25:50:50 CHX/MSN-PGA. A homogenous and widely distributed 50:50:50 CHX-loaded/MSN-PGA nanoparticles exhibited excellent bonding with the application of commercially available dentin adhesive. Conclusions A pH-sensitive CHX release response was noted when loaded in MSN grafted PGA nanoparticles. The formulated drug-loaded nanocarrier demonstrated excellent physicochemical, spectral, and biological characteristics. Showing considerable capacity to penetrate effectively inside dentinal tubules and having high antibacterial efficacy, this system could be potentially used in adhesive and restorative dentistry.


2021 ◽  
Author(s):  
Zohaib Akram ◽  
Sultan Aati ◽  
Hein Ngo ◽  
Amr Fawzy

Abstract Background: A low pH environment is created due to the production of acids by oral biofilms that further leads to the dissolution of hydroxyapatite crystal in the tooth structure significantly altering the equilibrium. Although the overall bacterial counts may not be eradicated from the oral cavity, however, synthesis of engineered anti-bacterial materials are warranted to reduce the pathogenic impact of the oral biofilms. The purpose of this study was to synthesize and characterize chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSN) grafted with poly-L-glycolic acid (PGA) and to test the in vitro drug release in various pH environments, cytotoxicity, and antimicrobial capacity. In addition, this study aimed to investigate the delivery of CHX-loaded/MSN-PGA nanoparticles through demineralized dentin tubules and how these nanoparticles interact with tooth dentin after mixing with commercial dentin adhesive for potential clinical application.Results: Characterization using SEM/TEM and EDX confirmed the synthesis of CHX-loaded/MSN-PGA. An increase in the percentage of drug encapsulation efficiency from 81% to 85% in CHX loaded/MSN and 92% to 95% in CHX loaded/MSN-PGA proportionately increased with increasing the amount of CHX during the fabrication of nanoparticles. For both time-periods (24 h or 30 Days), the relative microbial viability significantly decreased by increasing the CHX content (P<0.001). Generally, the cell viability percentage of DPSCs exposed to MSN-PGA/Blank, CHX-loaded/MSN, and CHX-loaded/MSN-PGA, respectively was >80% indicating low cytotoxicity profiles of experimental nanoparticles. After 9 months in artificial saliva (pH 7.4), the significantly highest micro-tensile bond strength value was recorded for 25:50 CHX/MSN and 25:50:50 CHX/MSN-PGA. A homogenous and widely distributed 50:50:50 CHX-loaded/MSN-PGA nanoparticles exhibited excellent bonding with the application of commercially available dentin adhesive.Conclusions: A pH-sensitive CHX release response was noted when loaded in MSN grafted PGA nanoparticles. The formulated drug-loaded nanocarrier demonstrated excellent physicochemical, spectral, and biological characteristics. Showing considerable capacity to penetrate effectively inside dentinal tubules and having high antibacterial efficacy, this system could be potentially used in adhesive and restorative dentistry.


Sign in / Sign up

Export Citation Format

Share Document