scholarly journals Wave directional measurement in Patos Lagoon, RS, Brazil

RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Natália Lemke ◽  
◽  
Lauro Julio Calliari ◽  
José Antônio Scotti Fontoura ◽  
Déborah Fonseca Aguiar

ABSTRACT The wave climate characterization in coastal environments is essentially important to oceanography and coastal engineering professionals regarding coastal protection works. Thus, this study aims to determine the most frequent wave parameters (significant wave height, peak period and peak direction) in Patos Lagoon during the period of operation of a directional waverider buoy (from 01/27/2015 to 06/30/2015). The equipment was moored at approximately 14 km from the São Lourenço do Sul coast at the geographic coordinates of 31º29’06” S and 51º55’07” W, with local depth of six meters, registering significant wave height, peak period and peak direction time series. During the analyzed period, the greatest wave frequencies corresponded to short periods (between 2 and 3.5 seconds) and small values of significant wave heights (up to 0.6 meters), with east peak wave directions. The largest wave occurrences corresponded to east peak wave directions (33.3%); peak wave periods between 2.5 and 3 seconds (25.6%) and between 3 and 3.5 seconds (22.1%); and to significant wave heights of up to 0.3 meters (41.2%) and from 0.3 to 0.6 meters (38%). This research yielded unprecedented findings to Patos Lagoon by describing in detail the most occurring wave parameters during the analyzed period, establishing a consistent basis for several other studies that might still be conducted by the scientific community.

Author(s):  
Leonardo Roncetti ◽  
Fabrício Nogueira Corrêa ◽  
Carl Horst Albrecht ◽  
Breno Pinheiro Jacob

Lifting operations with offshore cranes are fundamental for proper functioning of a platform. Despite the great technological development, offshore cranes load charts only consider the significant wave height as parameter of environmental load, neglecting wave period, which may lead to unsafe or overestimated lifting operations. This paper aims to develop a method to design offshore crane operational limit diagrams for lifting of personnel and usual loads, in function of significant wave height and wave peak period, using time domain dynamic analysis, for a crane installed on a floating unit. The lifting of personnel with crane to transfer between a floating unit and a support vessel is a very used option in offshore operations, and this is in many cases, the only alternative beyond the helicopter. Due to recent fatal accidents with lifting operations in offshore platforms, it is essential the study about this subject, contributing to the increase of safety. The sea states for analysis were chosen covering usual significant wave heights and peak periods limits for lifting operations. The methodology used the SITUA / Prosim software to obtain the dynamic responses of the personnel transfer basket lifting and container loads on a typical FPSO. Through program developed by the author, it was implemented the automatic generation of diagrams as a function of operational limits. It is concluded that using this methodology, it is possible to achieve greater efficiency in the design and execution of personnel and routine load lifting, increasing safety and a wider weather window available.


Author(s):  
H. Bazargan ◽  
H. Bahai ◽  
A. Aminzadeh-Gohari ◽  
A. Bazargan

A large number of ocean activities call for real time or on-line forecasting of wind wave characteristics including significant wave height (Hs). The work reported in this paper uses statistics, and artificial neural networks trained with an optimization technique called simulated annealing to estimate the parameters of a probability distribution called hepta-parameter spline for the conditional probability density functions (pdf’s) of significant wave heights given their eight immediate preceding 3-hourly observed Hs’s. These pdf’s are used in the simulation of significant wave heights related to a location in the Pacific. The paper also deals with short and long term forecasting of Hs for the region through generating random variates from the spline distribution.


Author(s):  
Andreas Sterl ◽  
Sofia Caires

The European Centre for Medium Range Weather Forecasts (ECMWF) has recently finished ERA-40, a reanalysis covering the period September 1957 to August 2002. One of the products of ERA-40 consists of 6-hourly global fields of wave parameters like significant wave height and wave period. These data have been generated with the Centre’s WAM wave model. From these results the authors have derived climatologies of important wave parameters, including significant wave height, mean wave period, and extreme significant wave heights. Particular emphasis is on the variability of these parameters, both in space and time. Besides for scientists studying climate change, these results are also important for engineers who have to design maritime constructions. This paper describes the ERA-40 data and gives an overview of the results derived. The results are available on a global 1.5° × 1.5° grid. They are accessible from the web-based KNMI/ERA-40 Wave Atlas at http://www.knmi.nl/waveatlas.


Author(s):  
George Z. Forristall ◽  
Jason McConochie

A wealth of Gulf of Mexico hurricane wind and wave data has been measured in recent years. We have constructed a database that combines HURDAT storm track information with NDBC buoy data for the years 1978–2010. HURDAT contains 141 storms for that period of which 67 had measured significant wave heights greater than 5 m. Industry measurements in Hurricanes Camille, Lili, Ivan, Katrina, Rita, Gustav and Ike have been added to the buoy data. We have used this data base to study the relationships between wind and wave parameters in hurricanes. Specifically, we have calculated regressions and equal probability contours for significant wave height and peak spectral periods, first and second moment periods, wave height and Jonswap gamma values, wind speeds and wave heights, and wave and wind directions. All of these calculations have been done for azimuthal quadrants of the storm and radial distances near and far from the storm center.


2019 ◽  
Author(s):  
Zhuxiao Shao ◽  
Bingchen Liang ◽  
Huajun Li ◽  
Ping Li ◽  
Dongyoung Lee

Abstract. An assessment of extreme significant wave heights is performed in the South China Sea (SCS), which is crucial for the coastal and offshore engineering in this area. Two significant factors influencing the assessment are the initial database and the assessing method. The initial database is a basic for assessment, and the assessing method is used to extrapolate appropriate return significant wave heights based on this database during a period. In this study, a 40-year (1975–2014) hindcasted significant wave height of tropical cyclone waves is adopted as the initial database. Based on this database, the peak significant wave height of every tropical cyclone wave is directly extracted as the initial sample; the independent and identically distributed assumption is satisfied; and the interference for the selection of the sample is avoided. The peak over threshold (POT) method with the generalized Pareto distribution (GPD) model is employed to extract the sufficiently large and high sample for model estimation. The peak excesses over a sufficiently high value (i.e., threshold) are fitted; thus, the return significant wave heights are highly dependent on the threshold. To determine the unique threshold for the POT method, characteristics of tropical cyclone waves are researched. The research results reveal that the separation value shown in the distribution of the initial sample is suitable for sampling in the SCS. Because the separation value is within the stable threshold range and the asymptotic tail approximation and estimation uncertainty are reasonable, the selected threshold is suitable and the corresponding return significant wave height is reliable.


2020 ◽  
Vol 8 (4) ◽  
pp. 236 ◽  
Author(s):  
Huijun Gao ◽  
Zhuxiao Shao ◽  
Guoxiang Wu ◽  
Ping Li

The study of extreme waves is important for the protection of coastal and ocean structures. In this work, a 22-year (1990–2011) wave hindcast in the Yellow Sea is employed to perform the assessment of extreme significant wave heights in this area. To extract the independent sample from this database, the fixed window method is used, which takes the peak significant wave height within five d. With the selected samples, directional declustering is studied to extract the homogenous sample. The results show that most of the independent samples (especially large samples) are observed in the North. In this direction, the peak over threshold (POT) method is used to extract the extreme sample from the homogenous sample, and then the generalized Pareto distribution model is used to extrapolate the extreme significant wave height. In addition to this combination, the annual maxima method with the Gumbel model is also used for estimating extreme values. The comparisons show that the return significant wave heights of the first combination are reliable, resulting from a flexible sampling window in the POT method. With this conclusion, the extreme significant wave height is extrapolated from the Yellow Sea, which can be used to protect the structure in the main directional bin.


2016 ◽  
Vol 31 (6) ◽  
pp. 2035-2045 ◽  
Author(s):  
Charles R. Sampson ◽  
James A. Hansen ◽  
Paul A. Wittmann ◽  
John A. Knaff ◽  
Andrea Schumacher

Abstract Development of a 12-ft-seas significant wave height ensemble consistent with the official tropical cyclone intensity, track, and wind structure forecasts and their errors from the operational U.S. tropical cyclone forecast centers is described. To generate the significant wave height ensemble, a Monte Carlo wind speed probability algorithm that produces forecast ensemble members is used. These forecast ensemble members, each created from the official forecast and randomly sampled errors from historical official forecast errors, are then created immediately after the official forecast is completed. Of 1000 forecast ensemble members produced by the wind speed algorithm, 128 of them are selected and processed to produce wind input for an ocean surface wave model. The wave model is then run once per realization to produce 128 possible forecasts of significant wave height. Probabilities of significant wave height at critical thresholds can then be computed from the ocean surface wave model–generated significant wave heights. Evaluations of the ensemble are provided in terms of maximum significant wave height and radius of 12-ft significant wave height—two parameters of interest to both U.S. Navy meteorologists and U.S. Navy operators. Ensemble mean errors and biases of maximum significant wave height and radius of 12-ft significant wave height are found to be similar to those of a deterministic version of the same algorithm. Ensemble spreads capture most verifying maximum and radii of 12-ft significant wave heights.


2019 ◽  
Vol 19 (10) ◽  
pp. 2067-2077 ◽  
Author(s):  
Zhuxiao Shao ◽  
Bingchen Liang ◽  
Huajun Li ◽  
Ping Li ◽  
Dongyoung Lee

Abstract. Extreme significant wave heights are assessed in the South China Sea (SCS), as assessments of wave heights are crucial for coastal and offshore engineering. Two significant factors include the initial database and assessment method. The initial database is a basis for assessment, and the assessment method is used to extrapolate appropriate return-significant wave heights during a given period. In this study, a 40-year (1975–2014) hindcast of tropical cyclone waves is used to analyse the extreme significant wave height, employing the peak over threshold (POT) method with the generalized Pareto distribution (GPD) model. The peak exceedances over a sufficiently large value (i.e. threshold) are fitted; thus, the return-significant wave heights are highly dependent on the threshold. To determine a suitable threshold, the sensitivity of return-significant wave heights and the characteristics of tropical cyclone waves are studied. The sample distribution presents a separation that distinguishes the high sample from the low sample, and this separation is within the stable threshold range. Because the variation in return-significant wave heights in this range is generally small and the separation is objectively determined by the track and intensity of the tropical cyclone, the separation is selected as a suitable threshold for extracting the extreme sample in the tropical cyclone wave. The asymptotic tail approximation and estimation uncertainty show that the selection is reasonable.


Author(s):  
Elzbieta M. Bitner-Gregersen

Wind and wave climate is much region and location dependent, affected by local properties of ocean environment. For safety of world-wide sailing ships knowledge about wind and wave climate is important, not only for open sea, but also in coastal areas. Wind and waves impact ship design, marine operations and they challenge ability of ships to maintain manoeuvrability in sea states. Their description differs in open sea and coastal waters, and recently it has got an attention due to the issue of the 2013 Interim Guidelines by IMO where adverse weather conditions to be used in assessment of ship manoeuvrability have been proposed. The present study shows differences between open sea and coastal water wind and wave climate using hindcast data in the analysis. The description of open sea metocean conditions is limited to the North Atlantic while European waters are used as representative for coastal regions. Correlations between wind speed and significant wave height as well as significant wave height and spectral peak period are established and compare with the ones suggested by the 2013 Interim Guidelines. Challenges in providing metocean description for assessment of ship manoeuvrability and uncertainties related to it are discussed.


2011 ◽  
Vol 8 (6) ◽  
pp. 2237-2270 ◽  
Author(s):  
T. Soomere ◽  
R. Weisse ◽  
A. Behrens

Abstract. The basic features of the wave climate in the South-Eastern Baltic Sea are studied based on available long-term measurements and simulations. The analysis of average, typical and extreme wave conditions, frequency of occurrence of different wave parameters, variations in wave heights from weekly to decadal scales, etc., is performed based on waverider measurements at the Darss Sill since 1991. The measured climatology is compared against numerical simulations with the WAM wave model driven by downscaled reanalysis of wind fields for 1958–2002 and by adjusted geostrophic winds for 1970–2007. The wave climate in this region is typical for semi-enclosed basins of the Baltic Sea. The maximum wave heights are about half of those in the Baltic Proper. The overall reliably recorded maximum significant wave height HS =4.46 m occurred during a severe S-SW storm in 1993 when the 10-min average wind speed reached 28 m s−1. The long-term average significant wave height (0.75 m) shows modest interannual (about 12 % of the long-term mean) and substantial seasonal variation. The wave periods are mostly concentrated in a narrow range of 2.5–4 s and their distribution is almost constant over decades. The role of remote swell is very small. The annual wave properties show large interannual variability but no long-term trends in average and extreme wave heights can be observed.


Sign in / Sign up

Export Citation Format

Share Document