scholarly journals Low-frequency oscillations in human tibial somatosensory evoked potentials

2006 ◽  
Vol 64 (2b) ◽  
pp. 402-406 ◽  
Author(s):  
Carlos Julio Tierra-Criollo ◽  
Antonio Fernando Catelli Infantosi

Oscillatory cerebral electric activity has been related to sensorial and perceptual-cognitive functions. The aim of this work is to investigate low frequency oscillations (<300 Hz), particularly within the gamma band (30-110 Hz), during tibial stimulation. Twenty-one volunteers were subjected to 5 Hz stimulation by current pulses of 0.2 ms duration and the minimum intensity to provoke involuntary twitch. EEG signals without (spontaneously) and during stimulation were recorded at primary somatosensory area. A time-frequency analysis indicated the effect of the stimulus artifact in the somatosensory evoked potential (SEP) frequencies up to 5 ms after the stimulus. The oscillations up to 100 Hz presented the highest relative power contribution (approximately 99%) for the SEP and showed difference (p<0.01) from the frequencies of the spontaneously EEG average. Moreover, the range 30-58 Hz was identified as the band with the highest contribution for the tibial SEP morphology (p<0.0001).

2013 ◽  
Vol 336-338 ◽  
pp. 928-931
Author(s):  
Chia Liang Lu ◽  
Pei Hwa Huang

Low frequency oscillations due to the lack of damping may occur in power systems under normal operation and will cause system instability. These oscillations are essentially nonlinear power responses which are difficult to extract the inherent characteristics by the time domain method. This paper aims to analyze nonlinear power responses by using the Hilbert-Huang transform (HHT) which is a time-frequency signal processing method which comprises steps of the empirical mode decomposition and the Hilbert transform. Dynamic power system responses, including generator output power and line power are to be processed by the HHT and a set of intrinsic mode functions and the associated Hilbert spectrum are obtained. The generator with most effects on the system will be accordingly found out through the time-frequency analysis and the power system stabilizer will be placed at the generator. Numerical results from a sample power system are demonstrated to show the validity of the time-frequency approach in the study of power system low frequency oscillations.


2021 ◽  
pp. 105444
Author(s):  
Chun-Chuan Chen ◽  
Antonella Macerollo ◽  
Hoon-Ming Heng ◽  
Ming-Kuei Lu ◽  
Chon-Haw Tsai ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 480
Author(s):  
Jingang Zhan ◽  
Hongling Shi ◽  
Yong Wang ◽  
Yixin Yao

Ice sheet changes of the Antarctic are the result of interactions among the ocean, atmosphere, and ice sheet. Studying the ice sheet mass variations helps us to understand the possible reasons for these changes. We used 164 months of Gravity Recovery and Climate Experiment (GRACE) satellite time-varying solutions to study the principal components (PCs) of the Antarctic ice sheet mass change and their time-frequency variation. This assessment was based on complex principal component analysis (CPCA) and the wavelet amplitude-period spectrum (WAPS) method to study the PCs and their time-frequency information. The CPCA results revealed the PCs that affect the ice sheet balance, and the wavelet analysis exposed the time-frequency variation of the quasi-periodic signal in each component. The results show that the first PC, which has a linear term and low-frequency signals with periods greater than five years, dominates the variation trend of ice sheet in the Antarctic. The ratio of its variance to the total variance shows that the first PC explains 83.73% of the mass change in the ice sheet. Similar low-frequency signals are also found in the meridional wind at 700 hPa in the South Pacific and the sea surface temperature anomaly (SSTA) in the equatorial Pacific, with the correlation between the low-frequency periodic signal of SSTA in the equatorial Pacific and the first PC of the ice sheet mass change in Antarctica found to be 0.73. The phase signals in the mass change of West Antarctica indicate the upstream propagation of mass loss information over time from the ocean–ice interface to the southward upslope, which mainly reflects ocean-driven factors such as enhanced ice–ocean interaction and the intrusion of warm saline water into the cavities under ice shelves associated with ice sheets which sit on retrograde slopes. Meanwhile, the phase signals in the mass change of East Antarctica indicate the downstream propagation of mass increase information from the South Pole toward Dronning Maud Land, which mainly reflects atmospheric factors such as precipitation accumulation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Byuckjin Lee ◽  
Byeongnam Kim ◽  
Sun K. Yoo

AbstractObjectivesThe phase characteristics of the representative frequency components of the Electroencephalogram (EEG) can be a means of understanding the brain functions of human senses and perception. In this paper, we found out that visual evoked potential (VEP) is composed of the dominant multi-band component signals of the EEG through the experiment.MethodsWe analyzed the characteristics of VEP based on the theory that brain evoked potentials can be decomposed into phase synchronized signals. In order to decompose the EEG signal into across each frequency component signals, we extracted the signals in the time-frequency domain with high resolution using the empirical mode decomposition method. We applied the Hilbert transform (HT) to extract the signal and synthesized it into a frequency band signal representing VEP components. VEP could be decomposed into phase synchronized δ, θ, α, and β frequency signals. We investigated the features of visual brain function by analyzing the amplitude and latency of the decomposed signals in phase synchronized with the VEP and the phase-locking value (PLV) between brain regions.ResultsIn response to visual stimulation, PLV values were higher in the posterior lobe region than in the anterior lobe. In the occipital region, the PLV value of theta band was observed high.ConclusionsThe VEP signals decomposed into constituent frequency components through phase analysis can be used as a method of analyzing the relationship between activated signals and brain function related to visual stimuli.


Sign in / Sign up

Export Citation Format

Share Document