scholarly journals Free-hand placement of high thoracic pedicle screws with the aid of fluoroscopy: evaluation of positioning by CT scans in a four-year consecutive series

2010 ◽  
Vol 68 (3) ◽  
pp. 390-395 ◽  
Author(s):  
Bruno Perocco Braga ◽  
Josaphat Vilela de Morais ◽  
Marcelo Duarte Vilela

OBJECTIVE: To evaluate the feasibility, safety and accuracy of pedicle screw placement in the upper thoracic spine using the free-hand technique with the aid of fluoroscopy; to analyze the methods used to verify correct screw positioning intra and postoperatively. METHOD: All patients with instability of the cervicothoracic or upper thoracic spine and at least one screw placed in the segment T1-T6 as part of a posterior construct entered the study. Only C-arm intraoperative fluoroscopy was used to guide screw placement. RESULTS: We obtained excellent positioning in 98.07% of the screws. CT scans precisely demonstrated pedicle wall and anterolateral body violations. There was no hardware failure, no neurological or vascular injury and no loss of alignment during the follow-up period. CONCLUSION: Pedicle screws can be safely placed in the upper thoracic spine when strict technical principles are followed. Only a CT scan can precisely demonstrate vertebral body and medial pedicle cortical violations.

2019 ◽  
Vol 9 (8) ◽  
pp. 859-865
Author(s):  
Mohammad Obeidat ◽  
Zachary Tan ◽  
Joel A. Finkelstein

Study Design: Clinical case series describing a novel surgical technique. Objective: Stabilization across the cervicothoracic junction (CTJ) poses technical difficulties which make this procedure challenging. The transition from cervical lordosis to thoracic kyphosis and the orientation of the lateral masses of the cervical spine compared with the pedicles of the thoracic spine create the need to accommodate for 2 planes of alignment when placing instrumentation. A novel surgical technique for instrumentation across the cervicothoracic junction is described. Methods: The use of cortical bone trajectory (CBT) technique for pedicle fixation in the upper thoracic spine is described in combination with cervical lateral mass or pedicle screws. The application in our first 12 patients for stabilization across the CTJ is described. Two case presentations illustrate the technique. Results: All the patients had rod screw constructs without the need to skip levels, there was no requirement for transverse connectors and only 1 plane of contouring was required. Conclusions: The use of CBT technique has not been described for the upper thoracic spine. This technique avoids many technical problems associated with posterior instrumentation of the CTJ. The facility of their use in this application arises from the similar coronal plane entry points as the cervical lateral mass screws compared with the more lateral starting point of traditional thoracic pedicle screws. The technique has clinical equipoise to traditional thoracic pedicle screw insertion but with the benefits of an easier ability to perform the instrumentation and saving levels of fusion.


2014 ◽  
Vol 05 (04) ◽  
pp. 349-354 ◽  
Author(s):  
Mark A. Rivkin ◽  
Jessica F. Okun ◽  
Steven S. Yocom

ABSTRACT Summary of Background Data: Multilevel posterior cervical instrumented fusions are becoming more prevalent in current practice. Biomechanical characteristics of the cervicothoracic junction may necessitate extending the construct to upper thoracic segments. However, fixation in upper thoracic spine can be technically demanding owing to transitional anatomy while suboptimal placement facilitates vascular and neurologic complications. Thoracic instrumentation methods include free-hand, fluoroscopic guidance, and CT-based image guidance. However, fluoroscopy of upper thoracic spine is challenging secondary to vertebral geometry and patient positioning, while image-guided systems present substantial financial commitment and are not readily available at most centers. Additionally, imaging modalities increase radiation exposure to the patient and surgeon while potentially lengthening surgical time. Materials and Methods: Retrospective review of 44 consecutive patients undergoing a cervicothoracic fusion by a single surgeon using the novel free-hand T1 pedicle screw technique between June 2009 and November 2012. A starting point medial and cephalad to classic entry as well as new trajectory were utilized. No imaging modalities were employed during screw insertion. Postoperative CT scans were obtained on day 1. Screw accuracy was independently evaluated according to the Heary classification. Results: In total, 87 pedicle screws placed were at T1. Grade 1 placement occurred in 72 (82.8%) screws, Grade 2 in 4 (4.6%) screws and Grade 3 in 9 (10.3%) screws. All Grade 2 and 3 breaches were <2 mm except one Grade 3 screw breaching 2-4 mm laterally. Only two screws (2.3%) were noted to be Grade 4, both breaching medially by less than 2 mm. No new neurological deficits or returns to operating room took place postoperatively. Conclusions: This modification of the traditional starting point and trajectory at T1 is safe and effective. It attenuates additional bone removal or imaging modalities while maintaining a high rate of successful screw placement compared to historical controls.


2006 ◽  
Vol 5 (6) ◽  
pp. 527-533 ◽  
Author(s):  
Ryan M. Kretzer ◽  
Daniel M. Sciubba ◽  
Carlos A. Bagley ◽  
Jean-Paul Wolinsky ◽  
Ziya L. Gokaslan ◽  
...  

Object The use of pedicle screws (PSs) for instrument-assisted fusion in the cervical and thoracic spine has increased in recent years, allowing smaller constructs with improved biomechanical stability and repositioning possibilities. In the smaller pedicles of the upper thoracic spine, the placement of PSs can be challenging and may increase the risk of damage to neural structures. As an alternative to PSs, translaminar screws can provide spinal stability, and they may be used when pedicular anatomy precludes successful placement of PSs. The authors describe the technique of translaminar screw placement in the T-1 and T-2 vertebrae. Methods Seven patients underwent cervicothoracic fusion to treat trauma, neoplasm, or degenerative disease. Nineteen translaminar screws were placed, 13 at T-1 and six at T-2. A single asymptomatic T-2 screw violated the ventral laminar cortex and was removed. The mean clinical and radiographic follow up exceeded 14 months, at which time there were no cases of screw pull-out, screw fracture, or progressive kyphotic deformity. Conclusions Rigid fixation with translaminar screws offers an attractive alternative to PS fixation, allowing the creation of sound spinal constructs and minimizing potential neurological morbidity. Their use requires intact posterior elements, and care should be taken to avoid violation of the ventral laminar wall.


2011 ◽  
Vol 21 (6) ◽  
pp. 1186-1191
Author(s):  
Yang Yu ◽  
Ning Xie ◽  
Bin Ni ◽  
Kai Liu ◽  
Qunfeng Guo ◽  
...  

2017 ◽  
Vol 25 (2) ◽  
pp. 230949901772243
Author(s):  
Mun Keong Kwan ◽  
Chee Kidd Chiu ◽  
Chris Yin Wei Chan ◽  
Reza Zamani ◽  
Nils Hansen-Algenstaedt

2019 ◽  
Vol 16 (2) ◽  
pp. 35-41 ◽  
Author(s):  
R. A. Kovalenko ◽  
V. V. Rudenko ◽  
V. A. Kashin ◽  
V. Yu. Cherebillo ◽  
D. A. Ptashnikov

Objective. To analyze the safety and accuracy of pedicle screw placement in the subaxial cervical and upper thoracic spine using patient-specific 3D navigation templates.Material and Methods. The study included 16 patients who underwent transpedicular implantation of screws in the subaxial cervical and upper thoracic vertebrae using patient-specific 3D navigation templates. A total of 88 screws were installed. All patients underwent preoperative CT angiography to assess visualization of the vertebral artery. Customized vertebral models and navigation templates were created using 3D printing technology. Models and templates were sterilized and used during surgery. The results of screw implantation, as well as the safety and accuracy of the placement, were assessed by postoperative CT.Results. The average deviation from the planned trajectory was 1.8 ± 0.9 mm. Deviation was estimated as class 1 (<2 mm) for 57 (64.77 %) screws, class 2 (2–4 mm) for 29 (32.95 %), and class 3 for two (2.27 %). The safety of screw implantation of grade 0 (the screw is completely inside the bone structure) was in 79 (89.77 %) cases, of grade 1 (<50 % of the screw diameter perforates the bone) – in 5 (5.68 %), and of grade 3 – in 2 (2.27 %).Conclusion. Using 3D navigation templates is an affordable and safe method of installing pedicle screws in the cervical and upper thoracic spine. The method can be used as an alternative to intraoperative CT navigation.


2013 ◽  
Vol 1 (3) ◽  
pp. 189-195 ◽  
Author(s):  
David M. Privitera ◽  
Hiroko Matsumoto ◽  
Jaime A. Gomez ◽  
David P. Roye ◽  
Joshua E. Hyman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document