scholarly journals Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

1991 ◽  
Vol 24 (2) ◽  
pp. 111-114 ◽  
Author(s):  
Benedito Barraviera ◽  
Paulo Câmara Marques Pereira ◽  
Jussara Marcondes Machado ◽  
Maria Julia de Souza ◽  
Carlos Roberto G. Lima ◽  
...  

The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females) aged 17 to 58 years. Twenty one (53.84%) of the patients presented a slow acetylatingphenotype and 18(46.16%) a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD) acti vity was decreased in 5(23.80%) slow acetylators and in 4(22.22%) fast acetylators. Glutathione reductase activity was decreased in 14 (66.66%) slow acetylators and in 12 (66.66%) fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p < 0.02). Analysis of the resultspermitted us to conclude that serum sulfadoxin levels are related to the acetylatorphenotype. Furthermore, sulfadoxin levels were always above 50 µg/ml, a value considered therapeutic. Glutathione reductase deficiency observed in 66% of patients may be related to the intestinal malabsorption of nutrients, among them riboflavin, a FAD precursor vitamin, inpatients with paracoceidioidomycosis.

1988 ◽  
Vol 104 (2) ◽  
pp. 87-91
Author(s):  
Benedito Barraviera ◽  
Rinaldo Poncio Mendes ◽  
Paulo Câmara Marques Pereira ◽  
Jussara Marcondes Machado ◽  
Paulo Roberto Curi ◽  
...  

1955 ◽  
Vol 33 (3) ◽  
pp. 404-407 ◽  
Author(s):  
H. Bruce Collier ◽  
Sheila C. McRae

Glutathione reductase activity of hemolyzates of human erythrocytes was measured by an amperometric titration of the reduced glutathione that is formed from oxidized glutathione. The electron donor in the system was reduced triphosphopyridine nucleotide, produced by the glucose-6-phosphate dehydrogenase of the cells. Removal of the red-cell stromata from hemolyzates slightly increased the reductase activity. Addition of Na+, K+, or Ca++ had no effect on the enzyme. No marked inhibition was observed in the presence of phenothiazine, phenothiazone, phenylhydrazine, or p-chloromercuribenzoate.


1955 ◽  
Vol 33 (1) ◽  
pp. 404-407 ◽  
Author(s):  
H. Bruce Collier ◽  
Sheila C. McRae

Glutathione reductase activity of hemolyzates of human erythrocytes was measured by an amperometric titration of the reduced glutathione that is formed from oxidized glutathione. The electron donor in the system was reduced triphosphopyridine nucleotide, produced by the glucose-6-phosphate dehydrogenase of the cells. Removal of the red-cell stromata from hemolyzates slightly increased the reductase activity. Addition of Na+, K+, or Ca++ had no effect on the enzyme. No marked inhibition was observed in the presence of phenothiazine, phenothiazone, phenylhydrazine, or p-chloromercuribenzoate.


Blood ◽  
1958 ◽  
Vol 13 (12) ◽  
pp. 1113-1125 ◽  
Author(s):  
JEAN P. DAWSON ◽  
WILLIAM W. THAYER ◽  
JANE F. DESFORGES ◽  
Alice C. Manchester ◽  
Reda Lendraitis

Abstract 1. Two cases of naphthalene hemolytic anemia in the newborn period are reported. 2. Both exhibited glutathione instability upon incubation with acetyl phenylhydrazine and naphthol months to years later. Several members of their families exhibited a similar defect with evidence that it is inherited as a simple dominant. 3. In those individuals with glutathione instability there was deficient TPNH2 generation by their hemolysates in the presence of glucose-6-phosphate and TPN, indicating a deficiency in glucose-6-phosphate dehydrogenase activity. Glutathione reductase activity was normal or decreased. 4. TPNH2-linked reduction of methemoglobin by erythrocyte suspensions in the presence of glucose and methylene blue was also decreased in those subjects tested, a finding consistent with the deficiency in glucose-6-phosphate dehydrogenase.


1988 ◽  
Vol 30 (5) ◽  
pp. 370-378 ◽  
Author(s):  
Benedito Barraviera ◽  
Paulo Eduardo de Abreu Machado ◽  
Domingos Alves Meira ◽  
Paulo Roberto Curi ◽  
Jair Natal Pires Martins ◽  
...  

The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05) for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s.), respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent) binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01) for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01) before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1 female) were also studied. The G6PD and glutathione reductase were partially activated, the change being more intense in males. On the basis of race and of the laboratory characteristics observed, it is possible to suggest that the G6PD deficiency of these individuals is of the African type and that the female is heterozygous for this deficiency. Analysis of the results as a whole permitted us to conclude that the methods proposed here were efficient for evaluating the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The latter is dependent on the pentose pathway, which generates NADPH, and on riboflavin, a FAD precursor vitamin.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 463
Author(s):  
Gabriela Krausova ◽  
Antonin Kana ◽  
Marek Vecka ◽  
Ivana Hyrslova ◽  
Barbora Stankova ◽  
...  

The selenium (Se) enrichment of yeasts and lactic acid bacteria (LAB) has recently emerged as a novel concept; the individual health effects of these beneficial microorganisms are combined by supplying the essential micronutrient Se in a more bioavailable and less toxic form. This study investigated the bioavailability of Se in the strains Enterococcus faecium CCDM 922A (EF) and Streptococcus thermophilus CCDM 144 (ST) and their respective Se-enriched forms, SeEF and SeST, in a CD (SD-Sprague Dawley) IGS rat model. Se-enriched LAB administration resulted in higher Se concentrations in the liver and kidneys of rats, where selenocystine was the prevalent Se species. The administration of both Se-enriched strains improved the antioxidant status of the animals. The effect of the diet was more pronounced in the heart tissue, where a lower glutathione reductase content was observed, irrespective of the Se fortification in LAB. Interestingly, rats fed diets with EF and SeEF had higher glutathione reductase activity. Reduced concentrations of serum malondialdehyde were noted following Se supplementation. Diets containing Se-enriched strains showed no macroscopic effects on the liver, kidneys, heart, and brain and had no apparent influence on the basic parameters of the lipid metabolism. Both the strains tested herein showed potential for further applications as promising sources of organically bound Se and Se nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document