scholarly journals The infection of microvascular endothelial cells with ExoU-producing Pseudomonas aeruginosa triggers the release of von Willebrand factor and platelet adhesion

2012 ◽  
Vol 107 (6) ◽  
pp. 728-734 ◽  
Author(s):  
Carla Freitas ◽  
Maria-Cristina Assis ◽  
Alessandra Mattos Saliba ◽  
Veronica Maria Morandi ◽  
Camila Castro Figueiredo ◽  
...  
2007 ◽  
Vol 292 (4) ◽  
pp. L833-L844 ◽  
Author(s):  
Chun Zhou ◽  
Hairu Chen ◽  
Fengmin Lu ◽  
Hassan Sellak ◽  
Jonathan A. Daigle ◽  
...  

The T-type Ca2+channel Cav3.1 subunit is present in pulmonary microvascular endothelial cells (PMVECs), but not in pulmonary artery endothelial cells (PAECs). The present study sought to assess the role of Cav3.1 in thrombin-induced Weibel-Palade body exocytosis and consequent von Willebrand factor (VWF) release. In PMVECs and PAECs transduced with a green fluorescent protein (GFP)-tagged VWF chimera, we examined the real-time dynamics and secretory process of VWF-GFP-containing vesicles in response to thrombin and the cAMP-elevating agent isoproterenol. Whereas thrombin stimulated a progressive decrease in the number of VWF-GFP-containing vesicles in both cell types, isoproterenol only decreased the number of VWF-GFP-containing vesicles in PAECs. In PMVECs, thrombin-induced decrease in the number of VWF-GFP-containing vesicles was nearly abolished by the T-type Ca2+channel blocker mibefradil as well as by Cav3.1 gene silencing with small hairpin RNA. Expression of recombinant Cav3.1 subunit in PAECs resulted in pronounced increase in thrombin-stimulated Ca2+entry, which is sensitive to mibefradil. Together, these data indicate that VWF secretion from lung endothelial cells is regulated by two distinct pathways involving Ca2+or cAMP, and support the hypothesis that activation of Cav3.1 T-type Ca2+channels in PMVECs provides a unique cytosolic Ca2+source important for Gq-linked agonist-induced VWF release.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 964-967 ◽  
Author(s):  
W Speiser ◽  
E Anders ◽  
KT Preissner ◽  
O Wagner ◽  
G Muller-Berghaus

Abstract Large vessel and microvascular endothelial cells were compared in their capacity to synthesize and secrete coagulant and fibrinolytic factors. Human omental tissue microvascular endothelial cells (HOTMEC) and human umbilical vein endothelial cells (HUVEC) were isolated, grown to confluency under identical conditions, and studied in primary cultures. After an incubation period of 12 hours in serum-free medium, the conditioned medium of confluent HOTMEC contained 100-fold higher levels of tissue plasminogen activator (tPA) antigen than that of HUVEC. The conditioned media as well as the lysates of both cell types did not contain any free tPA activity, but the free plasminogen activator inhibitor capacity was found intracellularly as well as extracellularly. Although von Willebrand factor was detected in both cell types by immunofluorescence, measurable amounts were only found in HUVEC using an enzyme-linked immunosorbent assay. The kinetics of protein C activation by thrombin on the surface of once-passaged cells were identical for HOTMEC and HUVEC. The present study indicates that cultivated HOTMEC produce larger quantities of tPA than HUVEC do, possess smaller amounts of von Willebrand factor than HUVEC do, and express thrombomodulin for protein C activation as effectively as HUVEC.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 964-967 ◽  
Author(s):  
W Speiser ◽  
E Anders ◽  
KT Preissner ◽  
O Wagner ◽  
G Muller-Berghaus

Large vessel and microvascular endothelial cells were compared in their capacity to synthesize and secrete coagulant and fibrinolytic factors. Human omental tissue microvascular endothelial cells (HOTMEC) and human umbilical vein endothelial cells (HUVEC) were isolated, grown to confluency under identical conditions, and studied in primary cultures. After an incubation period of 12 hours in serum-free medium, the conditioned medium of confluent HOTMEC contained 100-fold higher levels of tissue plasminogen activator (tPA) antigen than that of HUVEC. The conditioned media as well as the lysates of both cell types did not contain any free tPA activity, but the free plasminogen activator inhibitor capacity was found intracellularly as well as extracellularly. Although von Willebrand factor was detected in both cell types by immunofluorescence, measurable amounts were only found in HUVEC using an enzyme-linked immunosorbent assay. The kinetics of protein C activation by thrombin on the surface of once-passaged cells were identical for HOTMEC and HUVEC. The present study indicates that cultivated HOTMEC produce larger quantities of tPA than HUVEC do, possess smaller amounts of von Willebrand factor than HUVEC do, and express thrombomodulin for protein C activation as effectively as HUVEC.


Author(s):  
Nikolett Wohner ◽  
Silvie Sebastian ◽  
Vincent Muczynski ◽  
Dana Huskens ◽  
Bas Laat ◽  
...  

2016 ◽  
Vol 116 (07) ◽  
pp. 87-95 ◽  
Author(s):  
D'Andra Parker ◽  
Subia Tasneem ◽  
Richard Farndale ◽  
Dominique Bihan ◽  
J. Sadler ◽  
...  

SummaryMultimerin 1 (MMRN1) is a massive, homopolymeric protein that is stored in platelets and endothelial cells for activation-induced release. In vitro, MMRN1 binds to the outer surfaces of activated platelets and endothelial cells, the extracellular matrix (including collagen) and von Willebrand factor (VWF) to support platelet adhesive functions. VWF associates with MMRN1 at high shear, not static conditions, suggesting that shear exposes cryptic sites within VWF that support MMRN1 binding. Modified ELISA and surface plasmon resonance were used to study the structural features of VWF that support MMRN1 binding, and determine the affinities for VWF-MMRN1 binding. High shear microfluidic platelet adhesion assays determined the functional consequences for VWF-MMRN1 binding. VWF binding to MMRN1 was enhanced by shear exposure and ristocetin, and required VWF A1A2A3 region, specifically the A1 and A3 domains. VWF A1A2A3 bound to MMRN1 with a physiologically relevant binding affinity (KD: 2.0 ± 0.4 nM), whereas the individual VWF A1 (KD: 39.3 ± 7.7 nM) and A3 domains (KD: 229 ± 114 nM) bound to MMRN1 with lower affinities. VWF A1A2A3 was also sufficient to support the adhesion of resting platelets to MMRN1 at high shear, by a mechanism dependent on VWF-GPIbD binding. Our study provides new information on the molecular basis of MMRN1 binding to VWF, and its role in supporting platelet adhesion at high shear. We propose that at sites of vessel injury, MMRN1 that is released following activation of platelets and endothelial cells, binds to VWF A1A2A3 region to support platelet adhesion at arterial shear rates.


Sign in / Sign up

Export Citation Format

Share Document