scholarly journals Fast test for assessing the susceptibility of Mycobacterium tuberculosis to isoniazid and rifampin by real-time PCR

2012 ◽  
Vol 107 (7) ◽  
pp. 903-908 ◽  
Author(s):  
Maria Gisele Gonçalves ◽  
Lucila Okuyama Fukasawa ◽  
Rosangela Siqueira Oliveira ◽  
Maristela Marques Salgado ◽  
Lee H Harrison ◽  
...  
PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0143444 ◽  
Author(s):  
Yong Zhao ◽  
Guilian Li ◽  
Chongyun Sun ◽  
Chao Li ◽  
Xiaochen Wang ◽  
...  

2016 ◽  
Vol 5 (2) ◽  
pp. 105
Author(s):  
Heba Hussien ◽  
Eman Mahrous

<p>This study was conducted to detect <em>Mycobacterium tuberculosis</em> complex in milk in three Egyptian Governorates; El-Sharkia, El-Menoufia and El-Behera Governorates. 300 milk samples were collected from tuberculin positive cases, 18 (6.0%) were shedding <em>Mycobacterium tuberculosis</em> complex in their milk which detected by real time PCR. On another hand, 170 milk samples were collected from tuberculin negative cases, 5 (2.9%) were shedding <em>Mycobacterium tuberculosis</em> complex in their milk which detected by real time PCR. All milk samples were examined by three techniques including Microscopic examination, culture and real time PCR. Real time PCR is more rapid and accurate method than microscopic and culture method. The isolated colonies from culture were examined by Multiplex PCR to demonstrate the source of infection either human or animal source.</p>


2013 ◽  
Vol 114 (4) ◽  
pp. 1103-1108 ◽  
Author(s):  
L.A.S. Lira ◽  
F.C.F. Santos ◽  
M.S.Z. Carvalho ◽  
R.A. Montenegro ◽  
J.F.C. Lima ◽  
...  

2006 ◽  
Vol 44 (9) ◽  
pp. 3472-3472
Author(s):  
D. Hillemann ◽  
R. Warren ◽  
T. Kubica ◽  
S. Rusch-Gerdes ◽  
S. Niemann

2011 ◽  
Vol 50 (3) ◽  
pp. 754-761 ◽  
Author(s):  
S. Pholwat ◽  
B. Ehdaie ◽  
S. Foongladda ◽  
K. Kelly ◽  
E. Houpt

2018 ◽  
Vol 71 (9) ◽  
pp. 774-780 ◽  
Author(s):  
Jeong-Uk Kim ◽  
Dae-Shick Ryu ◽  
Choong-Hwan Cha ◽  
Seon-Hee Park

AimsMycobacterium tuberculosis and non-tuberculous mycobacteria (NTM) are clinically different, and the rapid detection and differentiation of M. tuberculosis complex (MTBC) and NTM is crucial for patient management and infection control. Given the slow growth of most pathogenic mycobacteria, nucleic acid amplification assays are excellent tools for direct identification of mycobacteria in clinical specimens. Recently, a multiplex real-time PCR assay was developed that can directly detect 20 mycobacterial species in clinical specimens. Here, we evaluated the diagnostic performance of the assay for diagnosing mycobacterial disease under routine laboratory conditions.MethodsA total of 3334 specimens collected from 1437 patients suspected of tuberculosis infection were subjected to acid-fast bacilli staining, conventional culture and the multiplex real-time PCR assay. To evaluate the sensitivity and specificity of the assay, the overall diagnosis of tuberculosis was defined by positive culture plus medical history, and the 2007 American Thoracic Society and Infectious Disease Society of America diagnostic criteria for NTM disease were applied.ResultsThe sensitivity, specificity, positive predictive value and negative predictive value were 87.5%, 99.6%, 96.1% and 98.5%, respectively, for the detection of MTBC isolates and 53.3%, 99.9%, 95.2%, and 98.9%, respectively, for detecting NTM isolates.ConclusionsThus, the assay can correctly differentiate between MTBC and NTM isolates in clinical specimens and would be a useful tool for the rapid differentiation of tuberculosis and NTM disease, despite its limited sensitivity for the diagnosis of NTM disease.


Sign in / Sign up

Export Citation Format

Share Document