scholarly journals Sampling and TDR probe insertion in the determination of the volumetric soil water content

2003 ◽  
Vol 27 (4) ◽  
pp. 575-582 ◽  
Author(s):  
W. G. Teixeira ◽  
G. Schroth ◽  
J. D. Marques ◽  
Bernd Huwe

Volumetric soil water content (theta) can be evaluated in the field by direct or indirect methods. Among the direct, the gravimetric method is regarded as highly reliable and thus often preferred. Its main disadvantages are that sampling and laboratory procedures are labor intensive, and that the method is destructive, which makes resampling of a same point impossible. Recently, the time domain reflectometry (TDR) technique has become a widely used indirect, non-destructive method to evaluate theta. In this study, evaluations of the apparent dielectric number of soils (epsilon) and samplings for the gravimetrical determination of the volumetric soil water content (thetaGrav) were carried out at four sites of a Xanthic Ferralsol in Manaus - Brazil. With the obtained epsilon values, theta was estimated using empirical equations (thetaTDR), and compared with thetaGrav derived from disturbed and undisturbed samples. The main objective of this study was the comparison of thetaTDR estimates of horizontally as well as vertically inserted probes with the thetaGrav values determined by disturbed and undisturbed samples. Results showed that thetaTDR estimates of vertically inserted probes and the average of horizontally measured layers were only slightly and insignificantly different. However, significant differences were found between the thetaTDR estimates of different equations and between disturbed and undisturbed samples in the thetaGrav determinations. The use of the theoretical Knight et al. model, which permits an evaluation of the soil volume assessed by TDR probes, is also discussed. It was concluded that the TDR technique, when properly calibrated, permits in situ, nondestructive measurements of q in Xanthic Ferralsols of similar accuracy as the gravimetric method.

2000 ◽  
Vol 80 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Z. J. Sun ◽  
G. D. Young ◽  
R. A. McFarlane ◽  
B.M. Chambers

A series of laboratory experiments was conducted, in order to systematically explore the effect of soil electrical conductivity on soil moisture determination using time domain reflectometry (TDR). A Moisture Point MP-917 soil moisture instrument (E.S.I. Environmental Sensors Inc., Victoria, BC, Canada) was used to measure propagation time (time delay) of a step function along a probe imbedded in fine sand with different moisture and salinity. The volumetric soil water content was independently determined using a balance. With the help of the diode-switching technique, MP-917 could detect the reflection from the end of the probe as the electrical conductivity of saturated soil extract (ECe) increased to 15.29 dS m−1. However, the relationship between volumetric soil water content and propagation time expressed as T/Tair (the ratio of propagation time in soil to that in air over the same distance) deviated from a linear relationship as the conductivity exceeded 3.72 dS m−1. At the same water content, the time delay in a saline soil was longer than that in a non-saline soil. This leads to an over-estimation of volumetric soil water content when the linear calibration was applied. A logarithmic relationship between volumetric soil water content and T/Tair has been developed and this relation includes soil electrical conductivity as a parameter. With this new calibration, it is possible to precisely determine the volumetric water content of highly saline soil using TDR. Key words: Time domain reflectometry, time delay, bulk electrical conductivity (σ), volumetric soil water content (θ), relative permittivity or dielectric constant (εr), propagation velocity Vp


1989 ◽  
Vol 69 (3) ◽  
pp. 701-704 ◽  
Author(s):  
G. C. TOPP ◽  
J. L. B. CULLEY

Determination of volumetric soil water content (θ) using time domain reflectometry (TDR) is well established. A commercially available instrument (IRAMS) (the IRAMS (Instrument for Reflectometry Analysis of Moisture in Soils) is a trademark registered by Foundation Instruments Inc. of Ottawa) is now available which incorporates computer software, thus providing direct readouts of θ. A field study of the operation of the IRAMS showed that it operates consistently and repeatedly. The IRAMS values were higher but related linearly to those obtained using a TDR cable tester and manual calculations of travel times. A linear correction of the IRAMS readings is proposed and possible causes are suggested for the observed deviations from expected values. Key words: Time domain, reflectometry, soil water content, field


2018 ◽  
Vol 10 (6) ◽  
pp. 97-105 ◽  
Author(s):  
Morgan Amanda ◽  
Joseph Pearson Brian ◽  
Shad Ali Gul ◽  
Moore Kimberly ◽  
Osborne Lance

Sign in / Sign up

Export Citation Format

Share Document