scholarly journals Lesion of the subthalamic nucleus reverses motor deficits but not death of nigrostriatal dopaminergic neurons in a rat 6-hydroxydopamine-lesion model of Parkinson's disease

Author(s):  
V. Rizelio ◽  
R.E. Szawka ◽  
L.L. Xavier ◽  
M. Achaval ◽  
P. Rigon ◽  
...  
Synapse ◽  
2018 ◽  
Vol 73 (3) ◽  
pp. e22077 ◽  
Author(s):  
Steven Vetel ◽  
Sophie Sérrière ◽  
Johnny Vercouillie ◽  
Jackie Vergote ◽  
Gabrielle Chicheri ◽  
...  

2020 ◽  
Author(s):  
Chenyu Zhang ◽  
Miao Zhao ◽  
Bingwei Wang ◽  
Zhijie Su ◽  
Bingbing Guo ◽  
...  

Abstract Background: Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), accompanied by chronic neuroinflammation, oxidative stress, and widespread accumulation of α-synuclein. Celastrol (Cel), a potent anti-inflammatory and anti-oxidative pentacyclic triterpene, has emerged as a neuroprotective agent. However, the mechanisms by which celastrol is neuroprotective in PD has not yet been elucidated. Methods: The MPTP and AAV-mediated human wild-type α-syn overexpression within SNc induced PD mouse models were employed in this study. By using multiple genetically modified mice (Nrf2-KO, NLRP3-KO and Caspase1-KO), we identified that celastrol effectively inhibited the NLRP3 inflammasome activation, mitigated motor deficits and nigrostriatal dopaminergic degeneration through Nrf2-NLRP3-Caspase1 pathway. Results: Here we show that celastrol protected against the loss of dopaminergic neurons, mitigated the neuroinflammation and motor deficits in both MPTP-induced PD mouse model and AAV-mediated human α-syn overexpression PD model. Whole-genome deep sequencing analysis reveals that Nrf2, NLRP3 and Caspase1 in SNc may be associated with the neuroprotective actions of celastrol in PD. Conclusions: These findings suggest that Nrf2-NLRP3-Caspase1 axis may be a key target of celastrol in PD treatment, and highlight the favorable properties linked to neuroprotection of celastrol, making celastrol as a promising disease-modifying agent for PD.


Biomolecules ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 175 ◽  
Author(s):  
Jackson Fink ◽  
Heather Pathak ◽  
John Smith ◽  
Cindy Achat-Mendes ◽  
Robert L. Haining

Neuromelanin, the polymeric form of dopamine which accumulates in aging neuronal tissue, is increasingly recognized as a functional and critical component of a healthy and active adult human brain. Notorious in plant and insect literature for their ability to bind and retain amines for long periods of time, catecholamine polymers known colloquially as ‘melanins’ are nevertheless curiously absent from most textbooks regarding biochemistry, neuroscience, and evolution. Recent research has brought attention to the brain pigment due to its possible role in neurodegeneration. This linkage is best illustrated by Parkinson’s disease, which is characterized by the loss of pigmented dopaminergic neurons and the ‘white brain’ pathological state. As such, the ability to determine the binding affinity of neurotoxic agents, as well as any potential specific endogenous ligands to neuromelanin are of interest and potential value. Neuromelanin has been shown to have saturable binding interactions with nicotine as monitored by a fluorimeter. This interaction provides a signal to allow for a competition-binding assay with target molecules which do not themselves produce signal. The current report establishes the viability of this competition assay toward three compounds with central relevance to Parkinson’s disease. The Kd of binding toward neuromelanin by methyl-phenyl-pyridinium ion (MPP+), dopamine, and 6-hydroxydopamine were found to be 1 mM, 0.05 mM, and 0.1 mM, respectively in the current study. In addition, we demonstrate that 6-hydroxydopamine polymerizes to form neuromelanin granules in cultured dopaminergic neurons that treated with 2,4,5-trihydroxy-l-phenylalanine. Immunohistochemical analysis using fluor-tagged anti-dopamine antibodies suggests that the incorporation of 6-hydroxydopamine (following internalization and decarboxylation analogous to levodopa and dopamine) alters the localized distribution of bound dopamine in these cells.


2006 ◽  
Vol 96 (6) ◽  
pp. 3248-3256 ◽  
Author(s):  
Moran Weinberger ◽  
Neil Mahant ◽  
William D. Hutchison ◽  
Andres M. Lozano ◽  
Elena Moro ◽  
...  

Recent studies suggest that beta (15–30 Hz) oscillatory activity in the subthalamic nucleus (STN) is dramatically increased in Parkinson's disease (PD) and may interfere with movement execution. Dopaminergic medications decrease beta activity and deep brain stimulation (DBS) in the STN may alleviate PD symptoms by disrupting this oscillatory activity. Depth recordings from PD patients have demonstrated beta oscillatory neuronal and local field potential (LFP) activity in STN, although its prevalence and relationship to neuronal activity are unclear. In this study, we recorded both LFP and neuronal spike activity from the STN in 14 PD patients during functional neurosurgery. Of 200 single- and multiunit recordings 56 showed significant oscillatory activity at about 26 Hz and 89% of these were coherent with the simultaneously recorded LFP. The incidence of neuronal beta oscillatory activity was significantly higher in the dorsal STN ( P = 0.01) and corresponds to the significantly increased LFP beta power recorded in the same region. Of particular interest was a significant positive correlation between the incidence of oscillatory neurons and the patient's benefit from dopaminergic medications, but not with baseline motor deficits off medication. These findings suggest that the degree of neuronal beta oscillatory activity is related to the magnitude of the response of the basal ganglia to dopaminergic agents rather than directly to the motor symptoms of PD. The study also suggests that LFP beta oscillatory activity is generated largely within the dorsal portion of the STN and can produce synchronous oscillatory activity of the local neuronal population.


Sign in / Sign up

Export Citation Format

Share Document