scholarly journals Fine structure of the retinal pigment epithelium and cones of Antarctic fish Notohenia coriiceps Richardson in light and dark-conditions

2007 ◽  
Vol 24 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Lucélia Donatti ◽  
Edith Fanta

The Antarctic fish Notothenia coriiceps Richardson, 1844 lives in an environment of daily and annual photic variation and retina cells have to adjust morphologically to environmental luminosity. After seven day dark or seven day light acclimation of two groups of fish, retinas were extracted and processed for light and transmission electron microscopy. In seven day dark adapted, retina pigment epithelium melanin granules were aggregated at the basal region of cells, and macrophages were seen adjacent to the apical microvilli, between the photoreceptors. In seven day light adapted epithelium, melanin granules were inside the apical microvilli of epithelial cells and macrophages were absent. The supranuclear region of cones adapted to seven day light had less electron dense cytoplasm, and an endoplasmic reticulum with broad tubules. The mitochondria in the internal segment of cones adapted to seven day light were larger, and less electron dense. The differences in the morphology of cones and pigment epithelial cells indicate that N. coriiceps has retinal structural adjustments presumably optimizing vision in different light conditions.

Acta Naturae ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 30-39 ◽  
Author(s):  
A. E. Kharitonov ◽  
A. V. Surdina ◽  
O. S. Lebedeva ◽  
A. N. Bogomazova ◽  
M. A. Lagarkova

The retinal pigment epithelium is a monolayer of pigmented, hexagonal cells connected by tight junctions. These cells compose part of the outer blood-retina barrier, protect the eye from excessive light, have important secretory functions, and support the function of photoreceptors, ensuring the coordination of a variety of regulatory mechanisms. It is the degeneration of the pigment epithelium that is the root cause of many retinal degenerative diseases. The search for reliable cell sources for the transplantation of retinal pigment epithelium is of extreme urgency. Pluripotent stem cells (embryonic stem or induced pluripotent) can be differentiated with high efficiency into the pigment epithelium of the retina, which opens up possibilities for cellular therapy in macular degeneration and can slow down the development of pathology and, perhaps, restore a patient's vision. Pioneering clinical trials on transplantation of retinal pigment epithelial cells differentiated from pluripotent stem cells in the United States and Japan confirmed the need for developing and optimizing such approaches to cell therapy. For effective use, pigment epithelial cells differentiated from pluripotent stem cells should have a set of functional properties characteristic of such cells in vivo. This review summarizes the current state of preclinical and clinical studies in the field of retinal pigment epithelial transplantation therapy. We also discuss different differentiation protocols based on data in the literature and our own data, and the problems holding back the widespread therapeutic application of retinal pigment epithelium differentiated from pluripotent stem cells.


2005 ◽  
Vol 37 (6) ◽  
pp. 341-346 ◽  
Author(s):  
Lars-Olof Hattenbach ◽  
Karl-Friedrich Beck ◽  
Josef Pfeilschifter ◽  
Frank Koch ◽  
Christian Ohrloff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document