scholarly journals Study of surface alterations of composite and ionomeric materials submitted to simulation of a high cariogenic challenge

1999 ◽  
Vol 13 (4) ◽  
pp. 321-327 ◽  
Author(s):  
Alexandre Rezende VIEIRA ◽  
Ivete Pomarico Ribeiro de SOUZA ◽  
Adriana MODESTO

We evaluated the surface of composite resins and glass-ionomer cements in a situation of high cariogenic challenge. Based on seventy-five standard test specimens of one glass-ionomer cement (Chelon Fil - ESPE), one resin-modified glass-ionomer (Vitremer - 3M), two polyacid-modified composite (VariGlass and Dyract - Dentsply) and one composite resin (Heliomolar - Vivadent), submitted to fourteen days of demineralization and remineralization cycling to simulate a high cariogenic challenge, the erosive aspects of the surface of the materials were assessed. All of the samples were evaluated by scanning electronic microscope and compared with another five test specimens of each material, prepared in the same way and serving as control. All of the materials studied suffered erosive action by the media, with different characteristics due to the different compositions, after being submitted to in vitro simulation of a high cariogenic challenge.

Author(s):  
Anjna Sharma ◽  
Pankaj Mishra

ABSTRACT Aim To compare the compressive strengths of composite resins and resin-modified glass ionomer cements (RMGICs) at different times. Materials and methods A total of 36 samples were prepared, 12 samples of each group, composite resins Filtek Z 250, Filtek Z 350, and resin-modified glass ionomer cement. Compressive strengths of specimens were measured after 1, 24 hours, and 7 days. Test was carried out on a “Universal Testing Machine” with cross-head speed of 5 mm/min. Results There was a significant difference between all the three restorative materials. Analysis of variance showed that mean compressive strengths of Z 250 after 1, 24 hours were higher than Z 350 and RMGIC (p < 0.05). The mean compressive strengths were reduced after 7 days in all the three groups, but after 7 days, the values of Z 250 when compared with the Z 350 and RMGIC were higher. Conclusion The study demonstrated that compressive strengths of hybrid composite resins (Z 250) were significantly higher than that of nanocomposites (Z 350) and RMGIC. How to cite this article Sharma A, Mishra P, Mishra SK. Time-dependent Variation in Compressive Strengths of Three Posterior Esthetic Restorative Materials: An in vitro Study. Int J Prosthodont Restor Dent 2016;6(3):63-65.


2013 ◽  
Vol 38 (3) ◽  
pp. 282-289 ◽  
Author(s):  
E Karaman ◽  
G Ozgunaltay

SUMMARY Aim: To evaluate the effects of four different types of composite resins and a resin modified glass ionomer cement (RMGIC) liner on the cuspal deflection of large MOD cavities in vitro. Materials & Methods: One hundred twenty-eight extracted human upper premolar teeth were used. After the teeth were divided into eight groups (n=16), standardized large MOD cavities were prepared. The distance between cusp tips was measured before and after the cavity preparations with a digital micrometer. Then the teeth were restored with different resin composites (Filtek Supreme XT, Filtek P60, Filtek Z250, Filtek Silorane - 3M ESPE, St Paul, MN, USA) with and without a RMGIC liner (Vitrebond, 3M ESPE, St Paul, MN, USA). Cuspal deflection was measured 5 min, 24 h, and 48 h after the completion of restorations. The data were statistically analyzed with Friedman and Kruskal Wallis tests. Results: A significant reduction in cuspal deflection was observed in Filtek Silorane restorations with and without RMGIC liner (p&lt;0.05). In all restored teeth, the distance between cusps was reduced but they did not return to their original positions during the 48 h period. All teeth showed cuspal deflection, but placement of RMGIC liner reduced it. Conclusion: The use of silorane-based composites and the placement of RMGIC liner under the composite resin restorations resulted in significantly reduced cuspal deflection.


2001 ◽  
Vol 15 (4) ◽  
pp. 277-282 ◽  
Author(s):  
Maria Fernanda Borro BIJELLA ◽  
Maria Francisca Thereza Borro BIJELLA ◽  
Salete Moura Bonifácio da SILVA

This study evaluated, in vitro, marginal microleakage in class II restorations confected with the glass ionomer cement Vitremer and with the composite resins Ariston pHc and P-60. The aims of the study were to assess the effect of thermocycling on those materials and to evaluate two methods utilized in the analysis of dye penetration. Sixty premolars divided in three groups were utilized; the teeth had proximal cavities whose cervical walls were located 1 mm below the cementoenamel junction. Half of the test specimens from each group underwent thermocycling; the other half remained in deionized water, at 37ºC. The specimens were immersed, for 24 hours, in a basic 0.5% fuchsin solution at 37ºC. For the analysis of microleakage, the specimens were sectioned in a mesio-distal direction, and the observation was carried out with the software Imagetools. The results were evaluated through the 2-way ANOVA and through the Tukey’s test. All groups presented marginal microleakage. The smallest values were obtained with Vitremer, followed by those obtained with the composite resins P-60 and Ariston pHc. There was no statistically significant difference caused by thermocycling, and the method of maximum infiltration was the best for detecting the extension of microleakage.


2017 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Shirin Malek ◽  
Mozammal Hossain ◽  
Md. Abdul Gafur ◽  
Md. Shahjalal Rana ◽  
Md. Ali Asgor Moral

<p>The purpose of the present study was to compare the marginal integrity of resin modified glass ionomer cement with that of resin sealant, <em>in vitro</em>. Forty artificial pit and fissure cavities were prepared in occlusal surface of extracted premolar teeth by using ¼ round carbide bur. Cavities were condensed with artificial organic debris followed by cleaning with prophylaxis pumice brush and paste and then separated into two treatment groups. In Group A, 15 fissure cavities were sealed by resin sealant and in Group B, 15 fissure cavities were sealed by resin modified glass ionomer sealant. These specimens were subjected to thermo-cycling followed by dye penetration test. The remaining 5 cavities from each group were analyzed for debris score by the SEM. The results of the microleakage test showed that the efficacy of preventing microleakage of samples sealed by resin modified glass ionomer sealant was higher than the samples sealed by resin sealant. However, no significant differences were found. It can be concluded that use of resin modified glass ionomer sealant is a good alternative for sealing pits and fissures.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. Koubi ◽  
H. Elmerini ◽  
G. Koubi ◽  
H. Tassery ◽  
J. Camps

This study compared thein vitromarginal integrity of open-sandwich restorations based on aged calcium silicate cement versus resin-modified glass ionomer cement. Class II cavities were prepared on 30 extracted human third molars. These teeth were randomly assigned to two groups () to compare a new hydraulic calcium silicate cement designed for restorative dentistry (Biodentine, Septodont, Saint Maur des Fossés, France) with a resin-modified glass ionomer cement (Ionolux, Voco, Cuxhaven, Germany) in open-sandwich restorations covered with a light-cured composite. Positive () and negative () controls were included. The teeth simultaneously underwent thermocycling and mechanocycling using a fatigue cycling machine (1,440 cycles, 5–55°C; 86,400 cycles, 50 N/cm2). The specimens were then stored in phosphate-buffered saline to simulate aging. After 1 year, the teeth were submitted to glucose diffusion, and the resulting data were analyzed with a nonparametric Mann-Whitney test. The Biodentine group and the Ionolux group presented glucose concentrations of 0.074 ± 0.035 g/L and 0.080 ± 0.032 g/L, respectively. No statistically significant differences were detected between the two groups. Therefore, the calcium silicate-based material performs as well as the resin-modified glass ionomer cement in open-sandwich restorations.


2009 ◽  
Vol 03 (02) ◽  
pp. 127-134 ◽  
Author(s):  
Tancan Uysal ◽  
Mihri Amasyali ◽  
Alp Erdin Koyuturk ◽  
Deniz Sagdic

ABSTRACTObjectives: The aim of this in vitro study was to compare the efficacy of Amorphous Calcium Phosphate (ACP)-containing orthodontic composite and resin-modified glass ionomer cement (RMGIC) on enamel demineralization adjacent to orthodontic brackets evaluated by a new laser fluorescence device.Methods: Sixty extracted maxillary premolars were used in the present study. Twenty orthodontic brackets were bonded with ACP-containing orthodontic adhesive (Aegis-Ortho), 20 were bonded with RMGIC (Fuji Ortho LC) ad20 were bonded with Transbond XT composite as the control. All samples were then cycled for 21 days through a daily procedure of demineralization for 6 hours and remineralization for 17 hours. After this procedure, demineralization evaluations were undertaken by a pen-type laser fluorescence device (DIAGNO-dent Pen). Analysis ofvariance (ANOVA) and Tukey test was used for statistical evaluation, at P<.05 level.Results: According to ANOVA, significant demineralization variations (ΔD) were determined among groups (F=6.650; P<.01). The ACP-containing composite showed the lowest (mean: 8.98±2.38) and the control composite showed the highest (mean:12.15±3.83) ΔD, during 21 days demineralization process (P<.01). Significant difference was also observed between the ΔD scores of the RMGIC (mean: 9.24±2.73) and control (P<.05).No significant differences was found in preventive effects of ACP-containing composite and RMGIC (P<.05) against demineralization.Conclusions: The use of both ACP-containing orthodontic composite and RMGIC should be recommended for any at-risk orthodontic patient to provide preventive actions and potentially remineralize subclinical enamel demineralization. (Eur J Dent 2009;3:127-134)


2014 ◽  
Vol 18 (2) ◽  
pp. 60-69 ◽  
Author(s):  
John W. Nicholson

SUMMARYThe fluoride ion has a well-established beneficial role in dentistry in protecting the teeth from assault by caries. It is known to contribute to the dynamic mineralisation process of the natural tooth mineral, and also to become incorporated with the mineral phase, forming a thin layer of fluorapatite. This is more resistant to acid attack than the native hydroxyapatite, hence protects the tooth against further decay. Other recently discovered aspects of the role and uptake of fluoride will also be discussed.One of the widely used dental restoratives, the glass-ionomer dental cement, is able to release fluoride in a sustained manner that may continue for many years, and this is seen as clinically beneficial. The closely related resin-modified glass-ionomer cement, and also the polyacid-modified composite resin (“compomer”) are able to do the same. There are also fluoride-containing conventional composite resins able to release fluoride.These various materials are reviewed and the way in which they release fluoride are described, as well as the effectiveness of the release at the levels involved. Studies of effectiveness of fluoride release from these various classes of material are reviewed, and shown to suggest that release from conventional and resin-modified glass-ionomers is more beneficial than from composite resins. This is attributed to 2 causes: firstly, that it is not possible to replace the lost fluoride in composites, unlike glass-ionomers, and secondly because the other ions released from glass-ionomers (calcium, phosphate) are able to contribute to local remineralisation of the tooth. The absence of these other ions in fluoridated composites means that remineralisation is able to occur to a lesser extent, if at all.


Sign in / Sign up

Export Citation Format

Share Document