scholarly journals Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes

2004 ◽  
Vol 61 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Renata Pereira da Cruz ◽  
Sandra Cristina Kothe Milach

Rice cold tolerance at the germination stage is important in Rio Grande do Sul (RS) where temperatures below 15°C prevent or reduce germination and plant establishment in early sowings. The present study aimed at identifying an adequate method for cold tolerance evaluation of the rice germination stage and at verifying the variability among 24 rice genotypes of different origins. Cold tolerance was evaluated in experiment I, germination under two conditions: 13°C for 28 days and 28°C for seven days, and in experiment II, germination under 28°C for 72 hours, 13°C for 96 hours and again 28°C for 72 hours. In experiment I measured characteristics were germination index, percentage of seeds with coleoptile length superior to 5 mm and percentage of reduction in coleoptile length due to cold. In experiment II the measured characteristic was coleoptile regrowth after the cold period. Cold tolerance varied among genotypes studied in both experiments, but only the percentage of reduction in coleoptile length and coleoptile regrowth allowed a better distinction between the tolerant checks and the susceptible one. In general, genotypes belonging to the Japonica subspecies presented higher cold tolerance than Indica, but there was variability within subspecies. The most adequate method of evaluation of cold tolerance is through percentage of reduction in coleoptile length and coleoptile regrowth. Among Japonica genotypes, Quilla 64117 and Diamante presented the highest cold tolerance, and among Indica, cultivars BR-IRGA 410 and IRGA 416 were the most cold tolerant at the germination stage.

Agriculture ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 162 ◽  
Author(s):  
Doan Cong Dien ◽  
Takeo Yamakawa

Owing to its origin in tropical and subtropical areas, rice is susceptible to cold stress. Low temperatures at the germination and seedling stages can result in seed loss, a delayed transplanting period, and lower final yield. In this study, 181 rice varieties from around the world were investigated for cold tolerance at the germination and seedling stages. At the germination stage, the responses of different rice varieties were examined based on the germination index, coleoptile length, and radicle length at low (13 °C) and control temperatures (25 °C). Significant variations in the germination index, coleoptile length, and radicle length were observed among varieties. Low temperature significantly decreased germination ability, and coleoptile and radicle growth in the studied varieties. At the seedling stage, cold tolerance of the rice varieties was evaluated based on the leaf color score under natural low temperature. Similar to the germination stage, at the seedling stage, significant variation in root and shoot growth was observed in the response of rice varieties to low temperature conditions. Based on the results from both the germination and seedling stages, two varieties (Hei-Chiao-Chui-Li-Hsiang and Ta-Mao-Tao) were selected as the best cold-tolerant varieties. Our results also indicate the benefits of warming treatments to protect rice seedlings from low temperature conditions.


2011 ◽  
Vol 62 (2) ◽  
pp. 169 ◽  
Author(s):  
Peyman Sharifi ◽  
Mohammad Reza Safari Motlagh

This paper reports analysis of 7 × 7 diallel crosses using a genotype main effect plus genotype-by-environment interaction biplot for determining cold tolerance at the germination stage in rice. ANOVA indicated that there were highly significant differences among the replications, genotypes, general combining ability (GCA) and specific combining ability (SCA) for percentage of reduction in radicle length (RL), coleoptile length (CL) and germination percentage (GP). The hybrid Neda × Hassani had the highest mid-parent heterosis for RL, CL and GP (–58.84, –68.47 and –80.77%, respectively). This result indicated that the reduction of three traits in crosses of Neda × Hassani was lower than their parents. The graphical representation by biplot analysis allowed a rapid and effective overview of GCA and reveals that Deilamani was an ideal general combiner for all traits and this parent is a superior variety for these three traits. Three potential heterotic groups are suggested for RL reduction. Four potential heterotic groups were identified for the two other traits, in the biplot. The first two principal component (PC) axes in the biplot for reduction in GP explained 85% of the variation with first and second principal components (PC1 and PC2, respectively). An important inference that can be drawn from these results is that cross combinations involving Hassani and Deilamani as one of the parents recorded desirable SCA effects for all or most of the studied traits. The information obtained from this experiment can facilitate the identification of hybrids that combine cold resistance traits in rice.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 459
Author(s):  
Muhammad Noor-ul-Ane ◽  
Chuleui Jung

The small hive beetle (SHB) Aethina tumida Murray, (Coleoptera: Nitidulidae) is now a global invasive pest of honey bees, but its cold tolerance potential has not been yet explored. Therefore, we measured the supercooling point (SCP) of different stages of SHBs and also the impact of acclimation on their SCPs and survival as a measure for cold tolerance. Combinations of different temperatures (0, 3, 5, 7, and 10 ∘C) for different hours (1, 3, 5, 7, 12, 24, 35, and 48 h) were used to assess SHB survival. The supercooling points occurred at lower temperatures (−19.4 ∘C) in wandering larvae than in the other stages (pupae: −12.5 ∘C, and feeding larvae: −10.7 ∘C). A lethal temperature (LT50) of feeding larvae was achieved earlier at 4.9 ∘C after 7 h exposure than the wandering larvae (3.7 ∘C at 48 h) and pupae (5.6 ∘C at 48 h). The sum of injurious temperature (SIT) is the most suitable estimation to describe cold resistance of the SHB immatures. The wandering larvae were the most cold tolerant, followed by pupae and feeding larvae based on SIT values of −286.8, −153.7 and −28.7 DD, respectively, and also showed more phenotypic plasticity after acclimation than feeding larvae and slightly more than pupae. Our results show that all stages, i.e., feeding larvae, wandering larvae and pupae, are chill susceptible. However, these stages, especially wandering larvae and pupae, showed the capacity to acclimate to cold temperatures, which may help them to survive in winter for the continuity of the SHB population, especially in a scenario of climate change.


2009 ◽  
Vol 35 (11) ◽  
pp. 2107-2115 ◽  
Author(s):  
Huai-Jun TANG ◽  
Gui-Hong YIN ◽  
Xian-Chun XIA ◽  
Jian-Jun FENG ◽  
Yan-Ying QU ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jie Gao ◽  
Tongxin Dou ◽  
Weidi He ◽  
Ou Sheng ◽  
Fangcheng Bi ◽  
...  

Abstract Background Banana is a tropical fruit with a high economic impact worldwide. Cold stress greatly affects the development and production of banana. Results In the present study, we investigated the functions of MaMAPK3 and MaICE1 involved in cold tolerance of banana. The effect of RNAi of MaMAPK3 on Dajiao (Musa spp. ‘Dajiao’; ABB Group) cold tolerance was evaluated. The leaves of the MaMAPK3 RNAi transgenic plants showed wilting and severe necrotic symptoms, while the wide-type (WT) plants remained normal after cold exposure. RNAi of MaMAPK3 significantly changed the expressions of the cold-responsive genes, and the oxidoreductase activity was significantly changed in WT plants, while no changes in transgenic plants were observed. MaICE1 interacted with MaMAPK3, and the expression level of MaICE1 was significantly decreased in MaMAPK3 RNAi transgenic plants. Over-expression of MaICE1 in Cavendish banana (Musa spp. AAA group) indicated that the cold resistance of transgenic plants was superior to that of the WT plants. The POD P7 gene was significantly up-regulated in MaICE1-overexpressing transgenic plants compared with WT plants, and the POD P7 was proved to interact with MaICE1. Conclusions Taken together, our work provided new and solid evidence that MaMAPK3-MaICE1-MaPOD P7 pathway positively improved the cold tolerance in monocotyledon banana, shedding light on molecular breeding for the cold-tolerant banana or other agricultural species.


1997 ◽  
Vol 41 (9) ◽  
pp. 1904-1909 ◽  
Author(s):  
V de Crécy-Lagard ◽  
W Saurin ◽  
D Thibaut ◽  
P Gil ◽  
L Naudin ◽  
...  

Streptomyces pristinaespiralis and S. virginiae both produce closely related hexadepsipeptide antibiotics of the streptogramin B family. Pristinamycins I and virginiamycins S differ only in the fifth incorporated precursor, di(mono)methylated amine and phenylalanine, respectively. By using degenerate oligonucleotide probes derived from internal sequences of the purified S. pristinaespiralis SnbD and SnbE proteins, the genes from two streptogramin B producers, S. pristinaespiralis and S. virginiae, encoding the peptide synthetase involved in the activation and incorporation of the last four precursors (proline, 4-dimethylparaaminophenylalanine [for pristinamycin I(A)] or phenylalanine [for virginiamycin S], pipecolic acid, and phenylglycine) were cloned. Analysis of the sequence revealed that SnbD and SnbE are encoded by a unique snbDE gene. SnbDE (4,849 amino acids [aa]) contains four amino acid activation domains, four condensation domains, an N-methylation domain, and a C-terminal thioesterase domain. Comparison of the sequences of 55 amino acid-activating modules from different origins confirmed that these sequences contain enough information for the performance of legitimate predictions of their substrate specificity. Partial sequencing (1,993 aa) of the SnbDE protein of S. virginiae allowed comparison of the proline and aromatic acid activation domains of the two species and the identification of coupled frameshift mutations.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rui-Qing Lin ◽  
Li Shu ◽  
Guang-Hui Zhao ◽  
Tian Cheng ◽  
Shang-Shu Zou ◽  
...  

The characteristics of the intergenic spacer rDNAs (IGS rDNAs) ofOesophagostomum dentatumandO. quadrispinulatumisolated from pigs in different geographical locations in Mainland China were determined, and the phylogenetic relationships of the two species were reconstructed using the IGS rDNA sequences. The organization of the IGS rDNA sequences was similar to their organization in other eukaryotes. The 28S-18S IGS rDNA sequences of bothO. dentatumandO. quadrispinulatumwere found to have variable lengths, that is, 759–762 bp and 937–1128 bp, respectively. All of the sequences contained direct repeats and inverted repeats. The length polymorphisms were related to the different numbers and organization of repetitive elements. Different types and numbers of repeats were found between the two pig nodule species, and two IGS structures were found withinO. quadrispinulatum. Phylogenetic analysis showed that allO. dentatumisolates were clustered into one clade, butO. quadrispinulatumisolates from different origins were grouped into two distinct clusters. These results suggested independent species and the existence of genotypes or subspecies within pig nodule worms. Different types and numbers of repeats and IGS rDNA structures could serve as potential markers for differentiating these two species of pig nodule worms.


2019 ◽  
Vol 20 (8) ◽  
pp. 1809 ◽  
Author(s):  
Chao Zhong ◽  
Yinping Li ◽  
Suli Sun ◽  
Canxing Duan ◽  
Zhendong Zhu

Phytophthora root rot (PRR) causes serious annual soybean yield losses worldwide. The most effective method to prevent PRR involves growing cultivars that possess genes conferring resistance to Phytophthora sojae (Rps). In this study, QTL-sequencing combined with genetic mapping was used to identify RpsX in soybean cultivar Xiu94-11 resistance to all P. sojae isolates tested, exhibiting broad-spectrum PRR resistance. Subsequent analysis revealed RpsX was located in the 242-kb genomic region spanning the RpsQ locus. However, a phylogenetic investigation indicated Xiu94-11 carrying RpsX is distantly related to the cultivars containing RpsQ, implying RpsX and RpsQ have different origins. An examination of candidate genes revealed RpsX and RpsQ share common nonsynonymous SNP and a 144-bp insertion in the Glyma.03g027200 sequence encoding a leucine-rich repeat (LRR) region. Glyma.03g027200 was considered to be the likely candidate gene of RpsQ and RpsX. Sequence analyses confirmed that the 144-bp insertion caused by an unequal exchange resulted in two additional LRR-encoding fragments in the candidate gene. A marker developed based on the 144-bp insertion was used to analyze the genetic population and germplasm, and proved to be useful for identifying the RpsX and RpsQ alleles. This study implies that the number of LRR units in the LRR domain may be important for PRR resistance in soybean.


2020 ◽  
Author(s):  
Changbing Huang ◽  
Chun Jiang ◽  
limin Jin ◽  
Huanchao Zhang

Abstract Background:Hemerocallis fulva is a perennial herb belonging to Hemerocallis of Hemerocallis. Because of the large and bright colors, it is often used as a garden ornamental plant. But most varieties of H. fulva on the market will wither in winter, which will affect their beauty. It is very important to study the effect of low temperature stress on the physiological indexes of H. fulva and understand the cold tolerance of different H. fulva. MiRNA is a kind of endogenous non coding small molecular RNA with length of 21-24nt. It mainly inhibits protein translation by cutting target genes, and plays an important role in the development of organisms, gene expression and biological stress. Low temperature is the main abiotic stress affecting the production of H. fulva in China, which hinders the growth and development of plants. A comprehensive understanding of the expression pattern of microRNA in H. fulva under low temperature stress can improve our understanding of microRNA mediated stress response. Although there are many studies on miRNAs of various plants under cold stress at home and abroad, there are few studies on miRNAs related to cold stress of H. fulva. It is of great significance to explore the cold stress resistant gene resources of H. fulva, especially the identification and functional research of miRNA closely related to cold stress, for the breeding of excellent H. fulva.Results A total of 5619 cold-responsive miRNAs, 315 putative novel and 5 304 conserved miRNAs, were identified from the leaves and roots of two different varieties ‘Jinyan’ (cold-tolerant) and ‘Lucretius ’ (cold-sensitive), which were stressed under -4 oC for 24 h. Twelve conserved and three novel miRNAs (novel-miR10, novel-miR19 and novel-miR48) were differentially expressed in leaves of ‘Jinyan’ under cold stress. Novel-miR19, novel-miR29 and novel-miR30 were up-regulated in roots of ‘Jinyan’ under cold stress. Thirteen and two conserved miRNAs were deferentially expressed in leaves and roots of ‘Lucretius’ after cold stress. The deferentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR156, miR166 and miR319 families. A total of 6 598 target genes for 6 516 known miRNAs and 82 novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Ten differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR(q-PCR), and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR156a-3-p, miR319a, and novel-miR19) may play important roles in plant response to cold stress.Conclusions Our study indicates that some putative target genes and miRNA mediated metabolic processes and stress responses are significant to cold tolerance in H. fulva.


Sign in / Sign up

Export Citation Format

Share Document