scholarly journals Heterochromatin variation in chromosomes of Anopheles (Nyssorhynchus) darlingi Root and A.(N.) nuneztovari Gabaldón (Diptera: Culicidae)

2000 ◽  
Vol 23 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Míriam Silva Rafael ◽  
Wanderli Pedro Tadei

C-banding was used to study the variations in heterochromatic block markings in chromosomes of Anopheles darlingi and A. nuneztovari from Manaus, State of Amazonas, and Macapá, State of Amapá, Brazil. Both species had two differently shaped X chromosomes and a Y chromosome that was entirely heterochromatic. The X1 chromosome of A. darlingi had markings that extended 1/3 of the total length whereas in the X2 chromosome the markings were located around the centromeric region. The markings on autosomal chromosomes were concentrated in the centromeric region in both species, with a heterochromatic block in one arm of chromosome II of A. darlingi. A. nuneztovari had three heterochromatic blocks in chromosome X1 (longer) and two blocks in X2 (shorter). X2X2 females were not detected in either species. The X1 and X2 chromosomes of males were found in A. darlingi, whereas in A. nuneztovari only the X1 chromosome was detected. Only intraspecific variation was found in heterochromatic block markings in the sex chromosomes and autosomes in the two populations of both species at each location.

1977 ◽  
Vol 55 (10) ◽  
pp. 1759-1762 ◽  
Author(s):  
K. L. Ying ◽  
D. G. Peden

Karyotypes of wood bison (Bison bison athabascae) and plains bison (Bison bison bison) were studied. Both subspecies were characterized by the same number of chromosomes (2n = 60), acrocentric autosomes, submetacentric X chromosomes, and an acrocentric Y chromosome. G-banding patterns suggest that when comparing wood bison and plains bison, 20 pair plus the sex chromosomes are homologous. Whether or not the remaining nine pair of chromosomes are homologous remains unknown.


Genome ◽  
2002 ◽  
Vol 45 (2) ◽  
pp. 243-252 ◽  
Author(s):  
Aleksandra Grabowska-Joachimiak ◽  
Andrzej Joachimiak

Mitotic metaphase chromosomes of Silene latifolia (white campion) and Silene dioica (red campion) were studied and no substantial differences between the conventional karyotypes of these two species were detected. The classification of chromosomes into three distinct groups proposed for S. latifolia by Ciupercescu and colleagues was considered and discussed. Additionally, a new small satellite on the shorter arm of homobrachial chromosome 5 was found. Giemsa C-banded chromosomes of the two analysed species show many fixed and polymorphic heterochromatic bands, mainly distally and centromerically located. Our C-banding studies provided an opportunity to better characterize the sex chromosomes and some autosome types, and to detect differences between the two Silene karyotypes. It was shown that S. latifolia possesses a larger amount of polymorphic heterochromatin, especially of the centromeric type. The two Silene sex chromosomes are easily distinguishable not only by length or DNA amount differences but also by their Giemsa C-banding patterns. All Y chromosomes invariably show only one distally located band, and no other fixed or polymorphic bands on this chromosome were observed in either species. The X chromosomes possess two terminally located fixed bands, and some S. latifolia X chromosomes also have an extra-centric segment of variable length. The heterochromatin amount and distribution revealed by our Giemsa C-banding studies provide a clue to the problem of sex chromosome and karyotype evolution in these two closely related dioecious Silene species.Key words: dioecious plant, Silene dioica, Silene latifolia, karyotype, sex chromosomes, heterochromatin, C-banding.


Genetics ◽  
1978 ◽  
Vol 90 (1) ◽  
pp. 93-104
Author(s):  
P Ripoll ◽  
A Garcia-Bellido

ABSTRACT The frequency of spontaneous and X-ray-induced mitotic recombination involving the Y chromosome has been studied in individuals with a marked Y chromosome arm and different XY compound chromosomes. The genotypes used include X chromosomes with different amounts of X heterochromatin and either or both arms of the Y chromosome attached to either side of the centromere. Individuals with two Y chromosomes have also been studied. The results show that the bulk of mitotic recombination takes place between homologous regions.


Genome ◽  
1989 ◽  
Vol 32 (4) ◽  
pp. 522-530
Author(s):  
Fiona F. Hunter

To test whether Simulium furculatum (Shewell) belongs to the Simulium vernum (Macquart) species-group, a comparison was made of the polytene chromosomes of S. furculatum and the S. vernum "Knebworth" standard. Only two chromosome arms (of six) could be completely analysed. It is argued that S. furculatum does not belong to the S. vernum species-group. A complex sex-chromosome system (X1, X2, Y1) is found in both eastern and western Canada. Phylogenetically, the single Y chromosome is intermediate between the two X chromosomes. Intraspecific inversion polymorphisms, which serve to differentiate eastern from western populations, are also identified. Only one sibling is indicated.Key words: black flies, Simulium furculatum, Simulium vernum, cytotaxonomy, polytene chromosomes, sex chromosomes.


2016 ◽  
Author(s):  
Ching-Ho Chang ◽  
Amanda M. Larracuente

AbstractRobertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution in animals by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given that autosomes and sex chromosomes differ in gene regulation and chromatin environment. While researchers are beginning to understand X chromosomes reversals to autosomes at a genomic level, it is difficult to study reversals of Y chromosomes because of their rapid sequence turnover and high repeat content. To gain insight into the genomic events following a Y chromosome reversal, we investigated an autosome-Y translocation in a well-studied and tractable organism, Drosophila pseudoobscura. About 10-15 Mya, the ancestral Y chromosome fused to a small autosome (the dot chromosome) in an ancestor of D. pseudoobscura. We used single molecule real-time sequencing reads to assemble the genic part of the D. pseudoobscura dot chromosome, including this Y-to-dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ~78 Kb and has a low repeat density, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y-to-dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to repeat landscape changes. Previous studies suggest that recurrent selective sweeps favoring shorter introns helped to shrink the Y-to-dot following the translocation. Our results suggest that genetic drift and a small ancestral Y chromosome may also help explain the compact size of the Y-to-dot translocation.


2017 ◽  
Vol 152 (2) ◽  
pp. 97-104 ◽  
Author(s):  
Anne-Marie Dutrillaux ◽  
Bernard Dutrillaux

In the males of Coleoptera, the most frequent sex chromosome constitution is XY. At metaphase I of meiosis, the X and Y are linked by nucleolar proteins, forming the so-called parachute bivalent (Xyp), which is assumed to allow the non-synapsed X and Y to segregate correctly at anaphase I. However, X0 males are not exceptional, and we explored the relationships between the X and nucleolar proteins in the absence of the Y chromosome in 6 species belonging to different families/subfamilies. Using C-banding and silver staining, we show that nucleolar proteins always remain in contact with the X until anaphase I. These proteins are generally more abundant than in the Xyp bivalent, may remain associated with the NOR during diakinesis, and frequently link the X to 1 or 2 autosomal bivalents, which seem to play the same role as the Y. This role may also be played by B chromosomes, which appear to be more frequent in X0 than in XY males. In conclusion, following Y chromosome loss, various strategies using nucleolar proteins have been developed to facilitate the migration of the unique X at meiotic anaphase I.


Genome ◽  
1987 ◽  
Vol 29 (3) ◽  
pp. 401-404 ◽  
Author(s):  
V. Baimai ◽  
A. Traipakvasin

Cytological examination of F1 larval mitotic chromosomes from a total of 126 families of Anopheles dirus species B from southern Thailand populations has revealed a pronounced quantitative variation of constitutive heterochromatin in the two sex chromosomes. Five types of X chromosomes and four types of Y chromosomes have been identified in this study. Such gross variation in sex chromosomes is most likely due to a gradual acquisition of extra heterochromatin. Key words: Anopheles, heterochromatin variation, coevolution, sex chromosomes.


2009 ◽  
Vol 7 (4) ◽  
pp. 617-622 ◽  
Author(s):  
Uedson Pereira Jacobina ◽  
Paulo Roberto Antunes de Mello Affonso ◽  
Paulo Luiz Souza Carneiro ◽  
Jorge Abdala Dergam

The species Hoplias malabaricus is a predator fish found in nearly all cis-Andean basins. From a cytogenetic point of view, this species comprises, at least, seven differentiated karyomorphs. Several localities have been formerly analyzed in Brazil, however, some regions, such as Bahia State, remain underrepresented. Recently, the Brazilian Environment Ministry classified both Itapicuru and Contas river basins (entirely located within Bahia territory) as priority conservation areas, whose biodiversity status lacks enough information. Therefore, the goal of the present work was to characterize, cytogenetically, populations of H. malabaricus from both basins, by using conventional staining, Ag-NOR and C-banding techniques. All specimens presented a diploid number of 2n = 40 with metacentric/submetacentric chromosomes, without differences between sexes, thereby representing the so-called "karyomorph F". The first metacentric pair presented a remarkably larger size in relation to the other pairs. The NORs were multiple, comprising the terminal region on long arms of two chromosomal pairs in both populations. However, the C-banding pattern was somewhat distinguishable between samples. Although sharing heterochromatic blocks at centromeric region of all chromosomes, the population from Itapicuru River basin appeared to have some more conspicuous blocks than those observed in the population from Contas River basin. The similar karyotype observed in both populations suggests a common geological history between them. The present results represent an advance in the knowledge about the cytogenetic pattern of H. malabaricus populations from poorly studied basins.


Genome ◽  
1996 ◽  
Vol 39 (5) ◽  
pp. 884-889 ◽  
Author(s):  
Ute Willhoeft ◽  
Gerald Franz

The sex chromosomes of the tephritid fruit fly Ceratitis capitata (Wiedemann) are heteromorphic. The male-determining region was located on the Y chromosome by deletion mapping using unbalanced offspring from several translocation strains. In addition, we showed that only 15% of the Y chromosome is required for male determination and male fertility. Based on this result, we expected to find Y-chromosomal length polymorphism in natural populations. Using fluorescence in situ hybridization with two repetitive DNA probes that label the Y chromosome, no obvious size differences were detected in seven wild-type strains and three mutant strains. As the medfly is probably of East African origin, we also analyzed two wild-type strains established recently from pupae sampled in Kenya. The Y chromosomes show a polymorphism in the hybridization pattern of a repetitive Y-specific medfly clone. However, the overall size of the Y chromosome is similar to that of the other strains. Besides C. capitata, the tephritid fruit flies Ceratitis (Pterandrus) rosa Karsch and Trirhithrum coffeae Bezzi also emerged from pupae sampled in Kenya. Their karyotype was analyzed by C-banding. Furthermore, the ribosomal genes were mapped to the sex chromosomes in these two species. Key words : Ceratitis capitata, Tephritidae, C-Banding, FISH, rDNA.


Author(s):  
Aline Muyle ◽  
Doris Bachtrog ◽  
Gabriel A. B. Marais ◽  
James M. A. Turner

We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila , male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue ‘How does epigenetics influence the course of evolution?’


Sign in / Sign up

Export Citation Format

Share Document