scholarly journals Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria

Author(s):  
Gislene G. F. Nascimento ◽  
Juliana Locatelli ◽  
Paulo C. Freitas ◽  
Giuliana L. Silva
2020 ◽  
Vol 11 (22) ◽  
pp. 5735-5739 ◽  
Author(s):  
Eunhye Lee ◽  
Xingshu Li ◽  
Juwon Oh ◽  
Nahyun Kwon ◽  
Gyoungmi Kim ◽  
...  

A boronic acid functionalized phthalocyanine displays aggregation-enhanced reactive oxygen species (ROS) generation and excellent photodynamic antibacterial activity.


Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 923
Author(s):  
Anette Garrido ◽  
Librada A. Atencio ◽  
Rita Bethancourt ◽  
Ariadna Bethancourt ◽  
Héctor Guzmán ◽  
...  

The present research aimed to evaluate the antibacterial activity of volatile organic compounds (VOCs) produced by octocoral-associated bacteria Bacillus sp. BO53 and Pseudoalteromonas sp. GA327. The volatilome bioactivity of both bacteria species was evaluated against human pathogenic antibiotic-resistant bacteria, methicillin-resistant Staphylococcus aureus, Acinetobacter baumanni, and Pseudomonas aeruginosa. In this regard, the in vitro tests showed that Bacillus sp. BO53 VOCs inhibited the growth of P. aeruginosa and reduced the growth of S. aureus and A. baumanni. Furthermore, Pseudoalteromonas sp. GA327 strongly inhibited the growth of A. baumanni, and P. aeruginosa. VOCs were analyzed by headspace solid-phase microextraction (HS-SPME) joined to gas chromatography-mass spectrometry (GC-MS) methodology. Nineteen VOCs were identified, where 5-acetyl-2-methylpyridine, 2-butanone, and 2-nonanone were the major compounds identified on Bacillus sp. BO53 VOCs; while 1-pentanol, 2-butanone, and butyl formate were the primary volatile compounds detected in Pseudoalteromonas sp. GA327. We proposed that the observed bioactivity is mainly due to the efficient inhibitory biochemical mechanisms of alcohols and ketones upon antibiotic-resistant bacteria. This is the first report which describes the antibacterial activity of VOCs emitted by octocoral-associated bacteria.


Nanoscale ◽  
2019 ◽  
Vol 11 (31) ◽  
pp. 14937-14951 ◽  
Author(s):  
Tao Huang ◽  
James A. Holden ◽  
Daniel E. Heath ◽  
Neil M. O'Brien-Simpson ◽  
Andrea J. O'Connor

Selenium nanoparticles (Se NPs) are a promising antibacterial agent to address the challenge of antibiotic resistant bacteria. In this work, the antibacterial activity of the spherical Se NPs was shown to be strongly size dependent.


2021 ◽  
Vol 16 (3) ◽  
pp. 91-95
Author(s):  
Surachai Rattanasuk ◽  
Rujirek Boongapim ◽  
Tannatorn Phiwthong

The aim of this study was to determine the antibacterial activity of Cathormion umbellatum extracts against seven antibiotic-resistant bacteria. The pods, leaves and branches of C. umbellatum were extracted with ethanol and methanol. The disc diffusion assay was used to screen the antibacterial activity and broth microdilution and colorimetric assay were used to measure the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. The result indicated that the highest inhibition zone (11 mm) was presented in ethanolic pods extract against multidrug resistance Klebsiella pneumoniae. The lowest MIC value of 0.05 mg/mL was obtained from branch extracted with ethanol against colistin resistant Pseudomonas aeruginosa. The lowest MBC values of 1.56 mg/mL were obtained when using C. umbellatum leaves extracted with methanol against all test antibiotic-resistant bacteria. This is the first report presented C. umbellatum extracts have the potential to eliminate antibiotic-resistant bacteria in patients. These findings show the antibacterial effect of C. umbellatum.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 205
Author(s):  
Jeong Choi ◽  
Hyon Jung ◽  
Yeon Baek ◽  
Bo Kim ◽  
Min Lee ◽  
...  

In this work, the antibacterial activity of silver nanoparticles (AgNPs) synthesized using Areca catechu extracts against three species of antibiotic-susceptible and three species of resistant bacteria was investigated. The effects of this plant were more promising when compared with other medicinal plants tested. The hydrothermal extract of Areca catechu was mixed with silver nitrate to synthesize AgNPs. The synthesized particle characteristics were analyzed by UV–Vis spectrophotometry, scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FT-IR). Minimum inhibitory concentration and minimum bactericidal concentration tests were conducted to confirm antibacterial activity and the results showed that AgNPs synthesized using Areca catechu extracts effectively inhibited the growth of bacterial species. Moreover, the SEM images of the bacterial species treated with AgNPs synthesized with Areca catechu extracts showed that clusters of AgNPs were attached to the surface of the bacterial cell wall, which could induce destruction of the cell membranes. The results suggest that AgNPs synthesized with Areca catechu extracts have the potential to treat antibiotic-resistant bacteria known as the major cause of nosocomial infections.


2021 ◽  
Vol 256 ◽  
pp. 117498
Author(s):  
Mohamed A. Mohamady Hussein ◽  
Mariusz Grinholc ◽  
Ahmed S. Abo Dena ◽  
Ibrahim M. El-Sherbiny ◽  
Mosaad Megahed

Sign in / Sign up

Export Citation Format

Share Document