scholarly journals Use of Melatonin in the In Vitro Production of Bovine Embryos

Author(s):  
Alan da Silva LIRA ◽  
Ricardo de Macedo CHAVES ◽  
Felipe de Jesus MORAES JUNIOR ◽  
Sergio Henrique COSTA JUNIOR ◽  
Brenda Karine Lima do AMARAL ◽  
...  

ABSTRACT We aimed to assess the effects of melatonin in the in vitro production of bovine embryos. Our experiment was conducted at the Laboratório de Reprodução Animal of the Universidade Estadual do Maranhão. The cumulus-oocyte complexes (COCs) were distributed among treatments at concentrations of 0, 10-1, 10-3 and 10-5 µMol/L melatonin. Our experiment was further divided into two: the first was to assess the effect of different concentrations of melatonin (treatments) on the maturation rate of COCs, and the second was to assess the effects of melatonin treatments on the in vitro production of bovine embryos. The results from the first experiment demonstrated no significant difference between the in vitro maturation rate of the cultivated COCs in treatments with melatonin. In the second experiment, however, melatonin treatments yielded statistically higher cleavage, morula and blastocyst rates in the 10-5 µM group (52.9%, 52.9%, and 35.3%, respectively), and lower rates in the 10-1 µM group (19.5%, 19.5% and 7.8%, respectively), compared to the others. The control group (no melatonin) and the 10-3 µM group showed similar results. We concluded that supplementation of melatonin in the in vitro maturation medium resulted in no improvement in the oocyte maturation rate, but in the in vitro production of embryos at different concentrations, the 10-5 µM group displayed better results, but with no improvement in the variables (P < 0.05).

2018 ◽  
Vol 12 (4) ◽  
pp. 311
Author(s):  
Letícia Franco Collares ◽  
Jorgea Pradieé ◽  
Morgana Alves Borges ◽  
Bruna Mion ◽  
Patrícia Gindri ◽  
...  

Zygote ◽  
2018 ◽  
Vol 26 (4) ◽  
pp. 314-318 ◽  
Author(s):  
Camila M. Cavalcanti ◽  
Iana S. Campelo ◽  
Mirelly M.A.S. Silva ◽  
João V.S. Albuquerque ◽  
Luciana M. Melo ◽  
...  

SummaryThis study aimed to compare the efficiency of different incubation systems for in vitro embryo production in bovine. Oocytes/embryos were cultured in three incubators: conventional – CONV, mini bench – MINI and portable – PORT. After in vitro maturation (IVM), oocytes were verified for maturation rate. The remaining structures were submitted to in vitro fertilization and culture to verify cleavage (day 2) and blastocyst (day 7) rates. Reactive oxygen species (ROS) were evaluated in post-IVM oocytes and embryos (days 2 and 7) using arbitrary fluorescence units (AFUs). No significant difference (P>0.05) was observed for maturation rate. The CONV system (74.0%) produced the highest cleavage rate (P<0.05) when compared with PORT (59.5%), but similar (P>0.05) to MINI (65.0%). The same pattern and differences were observed for blastocyst rate: CONV (33.3%), MINI (32.3%) and PORT (21.9%). ROS levels were not different (P>0.05) in post-IVM oocytes: CONV (35.6±4.5), MINI (29.4±4.0) and PORT (35.6±4.5). For day-2 embryos, ROS levels were higher (P<0.05) in MINI (44.2±3.1) in comparison with CONV (27.7±3.7) and PORT (33.3±3.2). No significant difference (P>0.05) was observed in blastocysts. In conclusion, although it produced high ROS levels at day 2 of culture, the MINI system was as efficient as the CONV system for blastocyst production. This option may be an interesting and economical for the in vitro embryo industry.


2016 ◽  
Vol 28 (2) ◽  
pp. 214
Author(s):  
G. R. Leal ◽  
C. A. S. Monteiro ◽  
H. F. R. A. Saraiva ◽  
A. J. R. Camargo ◽  
P. M. S. Rosa ◽  
...  

In vitro embryo production (IVP) is an important tool for cattle breeding. Brazilian dairy systems are based on Gyr × Holstein crossbreds, which integrates adaptability to tropical conditions and milk production. Quality determines the oocyte proportion that will develop to blastocyst stage, and although the lipid content is important in oocyte development, a high concentration in embryos is associated with cryotolerance reduction, making this a relevant issue for IVP systems. The in vitro maturation system (IVM) simulated physiological oocyte maturation (SPOM) mimics the physiological maturation events by using cyclic adenosine monophosphate (cAMP) modulators, which promote the increase of oocyte competence. Among the modulators, Forskolin has lipolytic properties. The aim of this study was to evaluate the effect of the SPOM system (Albuz 2010 Hum. Reprod. 25, 12) on bovine embryos (Gyr × Holstein) regarding their total number of cells (TNC) and lipid content. Oocytes were obtained by ovum pick-up from Gyr cows in 5 replications. After selection, they were randomly divided into 2 groups: SPOM (S) and control (C). The IVM lasted 24 h for group C (TCM 199 medium without FBS) in culture oven at 38.5°C, 5% CO2 in atmospheric air and high humidity. In the SPOM system, oocytes were in pre-IVM [TCM 199 medium + 100 µM Forskolin + 500 µM 3-isobutyl-1-methylxanthine (IBMX)] for 2 h and followed for extended IVM (TCM 199 medium + 20 µM cilostamide) for 28 h under the same conditions as control group. After IVM, oocytes were fertilised with semen from a single Holstein bull that was prepared by Percoll gradient method in Fert-TALP medium (Bioklone® Animal Reproduction, São Paulo, Brazil) for 22 h and transfered to culture droplets, where they remained for 7 days (n = 10–13 per group). The lipid content analysis was performed by staining with Oil red and the stained area fraction of each embryo was measured using software ImageJ (NIH, Bethesda, MD, USA). The TNC was measured after being stained with Hoechst 33342 and results were analysed by Student's t-test in Instat GraphPad program, with a 5% significance level. There was no significant difference (P > 0.05) between embryos from both groups on TNC (group S: 88.9 ± 28.0A; group C: 101.6 ± 29.1a) and lipid content (group S: 0.93 ± 12:18A; group C: ±0.15 to 0.96) analysis. Some studies have shown there is a beneficial effect on embryo quality when using this system; however, our results demonstrated that there was no effect on total number of cells using our conditions. Some authors have also demonstrated a reduction in embryo lipid content using Forskolin during in vitro culture. Our results suggest that the time of Forskolin exposure was not enough to ensure lipolytic action on the structures produced from oocytes (Gyr) treated in pre-IVM. It was concluded that the SPOM system had no effect on TNC and lipid content of Gyr/Holstein embryos. Financial support from FAPERJ and CAPES is acknowledged.


2019 ◽  
pp. 193371911983178 ◽  
Author(s):  
Naiza A. R. Sá ◽  
Luís A. Vieira ◽  
Anna Clara A. Ferreira ◽  
Jesús Cadenas ◽  
Jamily B. Bruno ◽  
...  

2012 ◽  
Vol 24 (5) ◽  
pp. 656 ◽  
Author(s):  
Islam M. Saadeldin ◽  
Ok Jae Koo ◽  
Jung Taek Kang ◽  
Dae Kee Kwon ◽  
Sol Ji Park ◽  
...  

Kisspeptin (Kp) is best known as a multifunctional peptide with roles in reproduction, the cardiovascular system and cancer. In the present study the expression of kisspeptin hierarchy elements (KISS1, GNRH1 and LHB) and their receptors (KISS1R, GNRHR and LHCGR, respectively) in porcine ovary and in cumulus–oocyte complexes (COCs) were investigated, as were its effects on the in vitro maturation (IVM) of oocytes and their subsequent ability to sustain preimplantation embryo competence after parthenogenetic electrical activation. Kp system elements were expressed and affected IVM of oocytes when maturation medium was supplemented with 10–6 M Kp. Oocyte maturation, maternal gene expression (MOS, GDF9 and BMP15), blastocyst formation rate, blastocyst hatching and blastocyst total cell count were all significantly increased when oocytes were matured in medium containing Kp compared with the control group (without Kp). A Kp antagonist (p234) at 4 × 10–6 M interfered with this hierarchy but did not influence the threshold effect of gonadotrophins on oocyte maturation. FSH was critical and permissive to Kp action on COCs by increasing the relative expression of KISS1R. In contrast, Kp significantly increased apoptosis, the expression of pro-apoptotic gene, BAK1, and suppressed trophoblast outgrowths from hatched blastocysts cultured on feeder cells. The present study provides the first functional evidence of the Kp hierarchy in porcine COCs and its role in enhancing oocyte maturation and subsequent developmental competence in an autocrine–paracrine manner. However, Kp supplementation may have a harmful impact on cultured hatched blastocysts reflecting systemic or local regulation during the critical early period of embryonic development.


2021 ◽  
Vol 10 (2) ◽  
pp. 46
Author(s):  
Sepvian Dewi Kurniawati ◽  
Suryanie Sarudji ◽  
Widjiati Widjiati

This study was aimed to determine the effect of urea in maturation medium on in vitro oocyte maturation rate. The medium used was TCM-199 added with Hepes, NaHCO3, Kanamycin 0.15 IU/mL, PMSG, 0.15 IU/mL hCG, and 10% FBS. Cumulus oocyte complexes (COCs) of cows derived from follicle aspiration were divided into three groups. In control group (P0), the COCs were matured in vitro in a maturation medium without urea addition, meanwhile in the P1 and P2 groups, the medium was added with urea 20 and 40 mg/dL, respectively. Each petri dish contained three drops of maturation medium (300 µl/drops) according to the groups. Microdrops were coated with mineral oil and then incubated in a 5% CO2 incubator, at 39 ˚C with maximum humidity. Aceto-orcein staining was conducted to evaluate the maturation of oocytes based on the achievement of metaphase II phase that is indicated by the presence of metaphase plate and/or first polar body. The result showed that the oocyte maturation rates of P0, P1, and P2 were 51.25, 52.43 (p >0.05), and 46.88 % (p <0.05) respectively. It could be concluded that the presence of urea at 40 mg/dL in maturation medium reduced the percentage of bovine oocyte maturation in vitro.


2015 ◽  
Vol 27 (1) ◽  
pp. 186
Author(s):  
A. Gad ◽  
U. Besenfelder ◽  
V. Havlicek ◽  
M. Hölker ◽  
F. Rings ◽  
...  

Early embryonic development, the period from oocyte maturation until blastocyst formation, is the most critical period of mammalian development. It is well known that in vitro maturation, fertilization, and culture of bovine embryos is highly affected by culture conditions. However, the stage-specific effect of culture environment is poorly understood. Therefore, we aimed to examine the effect of in vitro culture conditions during oocyte maturation and fertilization on the transcriptome profile of the resulting blastocysts. Bovine oocytes were matured in vitro and then either directly transferred to synchronized recipients, fertilized, and cultured in vivo (Vitro_M), or transferred after in vitro fertilization (Vitro_F), or at zygote stage (Vitro_Z) and blastocysts were collected at Day 7 by uterine flushing. For in vivo or in vitro fertilization, the same frozen-thawed commercial bull semen has been used. Complete in vitro (IVP) and in vivo produced blastocysts were used as controls. Gene expression patterns between each blastocyst group and in vivo produced blastocyst group were compared using EmbryoGENE's bovine microarray (EmbryoGENE, Québec, QC, Canada) over six replicates of each group (10 blastocyst/replicate). Microarray data were statistically analysed using the Linear Models for Microarray Data Analysis (LIMMA) package under the R program (The R Project for Statistical Computing, Vienna, Austria). Results showed that, the longer the embryos spent under in vitro conditions, the higher was the number of differentially expressed genes (DEG, fold-change = 2 with adjusted P-value = 0.05) compared with in vivo control group. The Vitro_M group showed the lowest number of DEG (149); in contrast IVP group represented 841, DEG, respectively compared to in vivo control group. Ontological classification of DEG showed that lipid metabolism was the most significant function influenced by in vitro maturation conditions. More than 55% of DEG in the Vitro_M group were involved in the lipid metabolism process and most of them showed down-regulation compared to in vivo control group. On the other hand, Vitro_F and Vitro_Z groups showed nearly similar numbers of DEG (584 and 532, respectively) and the majority of these genes in both groups were involved in cell-death- and cell-cycle-related functions. Pathway analysis revealed that retinoic acid receptor activation pathways were the common ones in the Vitro_M and Vitro_F groups. However, different signalling pathways were commonly dominant in the Vitro_F and Vitro_Z groups. This study provides the transcriptome elasticity of bovine embryos exposed to different environments during maturation, fertilization, and culture periods of development.


2019 ◽  
Vol 31 (1) ◽  
pp. 212
Author(s):  
Y. Honkawa ◽  
Y. Gen ◽  
S.-H. Hyon ◽  
C. Kubota

Epigallocatechin-3-gallate (EGCG) is a major ingredient of catechin polyphenols, and a strong antioxidant compound. Huang et al. (2018 Asian-australas. J. Anim. Sci.) reported that adding 50μM EGCG can improve the bovine oocyte maturation rate. In this research, we investigated the effect of EGCG supplementation on different periods in bovine IVF. Cumulus-oocyte complex (COC) collected from ovaries of slaughtered cows were cultured in maturation medium (20 to 30 oocytes per 100-µL droplet), which consisted of TCM-199 with Earle’s salts and 25mM HEPES supplemented with 10% (vol/vol) fetal bovine serum (FBS), 1µg mL−1 oestradiol, 0.02mg mL−1 FSH, and antibiotics at 38.5°C in a humidified atmosphere of 5% CO2 in air for 24h (in vitro maturation, IVM). After IVM, COC were fertilized in the fertilization medium (modified Brackett-Oliphant media supplemented with 10 µgmL−1 heparin, 10mM caffeine, and 3mg mL−1 BSA) for 6h using semen of one bull at final sperm concentration of 1×107 mL−1 (IVF). After IVF, COC were denuded and cultured in culture medium [CR1aa supplemented with 10% (vol/vol) FBS and antibiotics] at 38.5°C in a humidified atmosphere of 5% O2, 5% CO2, and 90%N2 for 8 days (in vitro culture, IVC). The EGCG was supplemented at 10, 25, 50, and 100M in IVM medium; 25 and 50 µM in IVF medium; and 50 and 100 µM in IVC medium. After 24h in IVM medium, COC were denuded by pipetting, fixed in 3:1 ethanol:acetic acid for 24h and then checked for nuclear and polar body by using aceto-orcein stain. After 18h in IVF, the pronucleus in zygote was fixed in 3:1 ethanol:acetic acid for 24h and checked by aceto-orcein staining. Embryo development was evaluated by counting the total number of embryos that had reached compacted morula by 6 to 8 days after IVF. Significant differences were analysed by chi-squared test and residual analysis. A P-value&lt;0.05 was considered statistically significant. When EGCG was added to IVM, there was no significant difference of oocyte maturation rate between all concentrations (0v. 10v. 25v. 50v. 100 μM: 73.9% v. 56.7% v. 76.7% v. 72.7% v. 63.5%). When EGCG was added to IVF, there was no significant difference of fertilized rate (0v. 25v. 50 μM: 59.4% v. 73.7% v. 64.9%). When EGCG was added to IVC, there was no significant difference in development rate (0v. 50v. 100 μM: 26.2% v. 15.7% v. 22.0%). In this research, EGCG addition did not affect bovine in vitro fertilization.


2004 ◽  
Vol 16 (2) ◽  
pp. 257
Author(s):  
H.J. Hernandez-Fonseca ◽  
R. Palomares-Naveda ◽  
E. Soto-Belloso ◽  
R. Gonzalez-Fernandez ◽  
A.D. De Ondiz-Sanchez ◽  
...  

Medium components during in vitro maturation (IVM) can significantly influence oocyte maturation and subsequent embryo development in vitro (Rose TA and Bavister BD 1992 Mol. Reprod. Dev. 31, 72–77; Harper K and Brackett B 1993 Biol. Reprod. 48, 409–416). The aim of this experiment was to evaluate the effect of EGF during IVM on further development of bovine embryos in vitro. Bovine ovaries were obtained at a slaughterhouse. Cumulus-oocyte complexes (COC) were aspirated from follicles 2–5mm in diameter. COC were incubated for 24h in either of 3 maturation media: T1 (n=72): modified TCM-199; T2 (n=45): modified TCM-199 supplemented with 10ngmL−1 of EGF;; or T3 (n=46): modified TCM-199 supplemented with 10% fetal bovine serum (FBS). After 24h of IVM, COC were inseminated with 2×106 motile spermatozoa/ml. After 18h of gamete coincubation, presumptive zygotes were denuded and placed in culture in SOF rich in glutamine (g-SOf) for 72h, at which time, cleavage rate (%) wass assesed (embryos with &gt;4 cells). Subsequently, cleaved embryos were incubated for an additional 72h in c-SOF (SOF rich in citrate and glucose). Finally, embryos were cultured in modified TCM-199 for 24–48h, at which time blastocyst formation rate (%) was evaluated. Cleavage rates were similar between T2 and T3 but significantly greater than in T1 (P&gt;0.05; see Table 1). Addition of EGF during IVM (T2;; 11/45, 24.4%) did not yield more blastocysts compared to the other two treatments (6/57, 10.5% and 10/29, 34.5%, T1 and T3, respectively). Nonetheless, T3 (with serum) had a greater yield of blastocysts compared to T1 (P&gt;0.01). Results in this study show that the addition of EGF to chemically defined media results in similar cleavage rates and blastocyst yields to those obtained when using serum during IVM. Key words: in vitro maturation, EGF, cleavage, bovine, embryo. Table 1 Effect of EGF and serum during IVM on cleavage rate of bovine oocytes


Sign in / Sign up

Export Citation Format

Share Document