scholarly journals Analysis of the braking longitudinal force considered by NBR7187 (2003) through a case study

2014 ◽  
Vol 7 (5) ◽  
pp. 801-816
Author(s):  
G. C. Bettazzi ◽  
T. B. Dumêt

This paper analyzed the mechanical behavior of a railway bridge by the Finite Element Method and by monitoring strain deformations with extensometry during its operation. To represent the situations that occur in its operation, tests were made with train braking. The results of monitoring the bottom cross section of column P15 of the bridge are presented. Based on the obtained data, the deformations occurring during the tests are verified against the calculated values obtained by the FEM method and those prescribed by NBR 7187(2003). The comparison between the real behavior of the structure, recorded experimentally through extensometry, and the numerical forecast and its assumptions from the project conceived was done. From this comparison, it verified that the value of longitudinal force due to braking recommended by the standard is appropriate.

2020 ◽  
Vol 20 (06) ◽  
pp. 2050039
Author(s):  
NISANTHKUMAR PANNEERSELVAM ◽  
SREEKUMAR MUTHUSWAMY

Deploying a stent to restore blood flow in the coronary artery is very complicated, as its internal diameter is smaller than 3[Formula: see text]mm. It has already been proven that mechanical stresses induced on stent and artery during deployment make the placement of stent very difficult, besides the development of complications due to artery damage. Various stent designs have already been developed, especially in the metallic category. Still, there are possibilities for developing new stent designs and patterns to overcome the complexities of the existing models. Also, the technology of metallic stents can be carried forward towards the development of bioresorbable polymeric stents. In this work, three new stent cell designs (curvature, diamond, and oval) have been proposed to obtain better performance and life. The finite element method is utilized to explore the mechanical behavior of stent expansion and determine the biomechanical stresses imposed on the stent and artery during the stenting procedure. The results obtained have been compared with the available literature and found that the curvature cell design develops lower stresses and, hence, be suitable for better performance and life.


Author(s):  
Luis Santos-Correa ◽  
Diego Pineda-Maigua ◽  
Fernando Ortega-Loza ◽  
Jhonatan Meza-Cartagena ◽  
Ignacio Abril-Naranjo ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dragan D. Milašinović ◽  
Aleksandar Landović ◽  
Danica Goleš

PurposeThe purpose of this paper is to contribute to the solution of the fatigue damage problem of reinforced concrete frames in bending.Design/methodology/approachThe problem of fatigue damage is formulated based on the rheological–dynamical analogy, including a scalar damage variable to address the reduction of stiffness in strain softening. The modal analysis is used by the finite element method for the determination of modal parameters and resonance stability of the selected frame cross-section. The objectivity of the presented method is verified by numerical examples, predicting the ductility in bending of the frame whose basic mechanical properties were obtained by non-destructive testing systems.FindingsThe modal analysis in the frame of the finite element method is suitable for the determination of modal parameters and resonance stability of the selected frame cross-section. It is recommended that the modulus of elasticity be determined by non-destructive methods, e.g. from the acoustic response.Originality/valueThe paper presents a novel method of solving the ductility in bending taking into account both the creep coefficient and the aging coefficient. The rheological-dynamical analogy (RDA) method uses the resonant method to find material properties. The characterization of the structural damping via the damping ratio is original and effective.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 525 ◽  
Author(s):  
Nadežda Langová ◽  
Roman Réh ◽  
Rastislav Igaz ◽  
Ľuboš Krišťák ◽  
Miloš Hitka ◽  
...  

The research on population shows that the count of overweight people has been constantly growing. Therefore, designing and modifying utility items, e.g., furniture should be brought into focus. Indeed, furniture function and safety is associated with the weight of a user. Current processes and standards dealing with the design of seating furniture do not meet the requirements of overweight users. The research is aimed at designing flexible chairs consisting of lamellae using the finite element method (FEM). Three types of glued lamellae based on wood with different number of layers and thickness were made and subsequently, their mechanical properties were tested. Values for modulus of elasticity and modulus of rupture were used to determine stress and deformation applying the FEM method for modelling flexible chairs. In this research, the methodology for evaluating the ultimate state of flexible chairs used to analyse deformation and stability was defined. The analysis confirms that several designed constructions meet the requirements of actual standards (valid for the weight of a user up to 110 kg) but fail to meet the requirements for weight gain of a population.


2018 ◽  
Vol 196 ◽  
pp. 02010
Author(s):  
Viacheslav Shirokov ◽  
Alexey Soloviev ◽  
Tatiana Gordeeva

The research paper focuses on internal forces determination in the elements of modular buildings under wind load. It provides a methodology for determining dynamic characteristics of a building and for calculating wind loads. This method is based on the following assumptions: coupling of the modules elements is rigid; coupling of block-modules with foundations is hinged-fixed; connection of blocks to each other is hinged in angular points; the floor disk in its plane is not deformed. On the basis of these assumptions the authors derived approximate and refined equations for determining forces in modules elements under static and pulsation components of wind load. The equation of bending moments determination in the pillar bearing cross-section is obtained by approximation of the graph of moments variation, calculated for the spectrum of the ratio of the pillar stiffness and the floor beam in the range from 1/64 to 64. The paper further introduces the calculation results of forces based on the proposed methodology and on the finite element method. The calculations were done while taking different values of wind load and different number of storeys in a building (from 1 to 4 floors). The obtained results are similar, the error does not exceed 5%.


Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 171
Author(s):  
Angeliki Papalou ◽  
Dimitrios K. Baros

Wildfires have always been a threat to forests and areas of high combustible vegetation. When they are not kept under control, they can spread to residential areas, creating severe damage and destruction. This paper examines the effects of the extreme heat conditions that developed during a wildfire on buildings as a function of their construction type. One of the deadliest wildfires in Greece (July 2018) is considered as a case study, and the damage that occurred to buildings during this event is presented. The temperature of the various structural subsystems in extreme heat conditions was estimated using the finite element method. Parameters that influenced the corresponding temperature distribution were identified. Simple guidelines are given to prevent or reduce damage in buildings exposed to wildfires.


1984 ◽  
Vol 106 (1) ◽  
pp. 130-136 ◽  
Author(s):  
W. T. Asbill ◽  
P. D. Pattillo ◽  
W. M. Rogers

The purpose of this investigation was to gain a better understanding into the mechanical behavior of the API 8 Round casing connection, when subjected to service loads of assembly interference, tension and internal pressure. The connection must provide both structural and sealing functions and these functions were evaluated by several methods. Part I discusses the methods of analysis, which include hand calculations using strength of materials, finite element method via unthreaded and threaded models, and experimental analysis using strain gages. Comparisons of all three methods are made for stresses and show that the finite element method accurately models connection behavior.


2012 ◽  
Vol 482-484 ◽  
pp. 792-795
Author(s):  
Ye Qiang Lu ◽  
Wen Feng Wei ◽  
Yi Long Zhang

Analyzing the strain expression referring to Castigliano’s Theorem after analysis of the tripod type universal coupling under drawing force comes to the simplified mode of tripod type universal coupling. And with the help of simplified mode, it concludes that the minimum strain occurs when the radius of cross-section of the circlip equals to the depth of groove. After setting material attributes, boundary conditions, contacts of the tripod type universal coupling, and static simulation with the finite element method in SolidWorks, the strain of the universal couplings is carried out. Theoretical analysis and simulation results show that when the radius of cross-section of the coupling equals to the depth of groove, the strain is minimum.


Sign in / Sign up

Export Citation Format

Share Document