Frontal Impact Analysis of an Interprovincial Bus Using the Finite Element Method: Case Study in Ecuador

Author(s):  
Luis Santos-Correa ◽  
Diego Pineda-Maigua ◽  
Fernando Ortega-Loza ◽  
Jhonatan Meza-Cartagena ◽  
Ignacio Abril-Naranjo ◽  
...  
2005 ◽  
Vol 39 (5) ◽  
pp. 431-443 ◽  
Author(s):  
Ilknur Kaftan ◽  
Mujgan Salk ◽  
Coskun Sari

Author(s):  
Yukihiro Iwata ◽  
Hiroto Inoue ◽  
Kenji Tsuji ◽  
Kazuhiko Hosokawa

Abstract Concerning the development of portable optical disk products, higher impact resistant of the optical pick-up is required. Conventionally, cut and try measures, mainly based on experiment were applied to these problems, and it took much time and cost. Therefore, we developed this drop impact analysis of the optical pick-up based on the Finite Element Method (FEM) and clarified the failure mechanism of the suspension wire breaking with drop impact. With this analysis method, we also developed a new optical pick-up with a curved suspension wire, and realized much higher impact resistance.


2015 ◽  
Vol 1120-1121 ◽  
pp. 590-592
Author(s):  
Hyoh Yun Choi ◽  
Yeon Jun Lim ◽  
Hyun Jun Cho ◽  
Hyun Bum Park

In this work, study on impact damage FEM model of composite structure was performed. From the finite element method analysis results of composite laminate, it was confirmed that the results of analysis was reasonable. The velocity of impactor to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using finite element method was performed. According to the impact analysis results of composite laminate, it was confirmed that the damage was generated at the estimated impact velocity. Finally, the comparison of the numerical results with those measured by the experiment showed good agreement.


Author(s):  
Diego Va´zquez ◽  
Hugo Medelli´n ◽  
Antonio Ca´rdenas ◽  
Alonso de la Garza

Advanced engineering techniques for analysis are modern tools used for companies to enhance the design and manufacturing cycles of new or existing products. Finite element method has become one of the most used tools in the design process of products. This paper presents a case study regarding a design change of the brackets that support the gas jet in stoves. Using the finite element method, the mechanical performance of the existing brackets is compared with the performance of the new proposed bracket. This comparison is used to evaluate the feasibility of carrying out the design change. The benefit of the new design is a reduction of materials, production costs and production times. Experimental analysis of the materials and the validation of the finite element solutions were also performed. The results of the experimental analysis and FEM simulation are discussed and presented. Finally, the performance of the existing and the new brackets under several load cases is compared and the results suggest that the product design change is feasible.


2011 ◽  
Vol 103 ◽  
pp. 41-45
Author(s):  
Zhi Cheng Huang ◽  
Ze Lun Li

The influence of the frame structure’s deformation of the automatic hydraulic tile press on energy consumption has long been neglected. In this paper, a case study in two common beam-column types hydraulic automatic tile press, get the deformations of the columns produced by the tensile by using the finite element method, and then calculate their energy consumption due to deformations. Through analysis and comparison, provide a reference for future design and selection of the hydraulic automatic tile press.


2021 ◽  
Vol 11 (13) ◽  
pp. 6052
Author(s):  
Thi Thanh Nga Nguyen ◽  
Thang Xuan Duong ◽  
Van-Sy Nguyen

This paper presents a general framework to design a cam profile using the finite element method from given displacements of the follower. The arbitrarily complex cam profile is described by Lagrangian finite elements, which are formed by the connectivity of nodes. In order to obtain the desired profile, a penalty-type functional that enforces the prescribed displacement of the follower is proposed. Additionally, in order to ensure convexity of the functional, a numerical stabilization scheme is used. The nodal positions are then obtained by solving a nonlinear system of equations resulting from minimizing the total functional. The geometrical accuracy of the cam profile can be controlled by the number of finite elements. A case study is considered to illustrate the flexibility, accuracy, and robustness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document