scholarly journals Development and evaluation of a chronotherapeutic drug delivery system of torsemide

2011 ◽  
Vol 47 (3) ◽  
pp. 593-600 ◽  
Author(s):  
Songa Ambedkar Sunil ◽  
Nali Sreenivasa Rao ◽  
Meka Venkata Srikanth ◽  
Michael Uwumagbe Uhumwangho ◽  
Kommana Srinivas Phani Kumar ◽  
...  

The objective of this study was to prepare and evaluate chronotherapeutic drug delivery systems (ChrDDs) of torsemide. Compression coated tablets (CCT) containing torsemide in the core tablet were prepared by the compression coating technique with different grades of polyethylene oxide (PEO WSR 301 & 1105). The optimized formulations were characterised for tabletting parameters and drug polymer interaction by Fourier-Transform Infrared Spectroscopy (FTIR).The hardness of all the CCT using PEO WSR 301 & PEO WSR 1105 were in the range 6-8 kg/cm² & 5.5 to 7 kg/cm² respectively. Their friability values were <0.3%. All the CCT showed a clear lag time but finalized as per the predetermined lag time. As the amount of PEO was increased in the outer layer the drug released was delayed. The drug content of all the CCT was >99%. The FTIR studies showed no interaction throughout the process of development. Formulations of F7 and of P7 were considered optimized formulations since they yielded a predetermined lag time of 6h before burst release. Hence, these formulations can be exploited to achieve chronotherapeutic drug delivery systems of Torsemide for the treatment of hypertension at the time the patient needs it.

Author(s):  
Mahalakshmi P ◽  
Suriyaprakash T N K ◽  
S. Lakshmana Prabu

The objective of this work was to design and evaluate an oral site-specific, pulsatile drug delivery system containing Pantoprazole sodium which can be targeted to colon in a pH and time dependent manner, to modulate the drug level in synchrony with the circadian rhythm of nocturnal hyperacidity. Five different composition of Core tablets were prepared by direct compression technique. Based on the release studies of core tablets, nine different compositions of press coated tablets were prepared and analyzed. The press coated tablet further coated by using five different proportions of Eudragit RS PO for providing consistent, reproducible chronomodulated release profile. Formulation FPC3 is more suitable among the formulations to design pulsatile release formulations of pantoprazole sodium for 6 hours lag time. After this lag time burst release was observed which exhibited sigmodial release pattern and that was considered to be an ideal for the pulsatile drug delivery system. The chronomodulated drug delivery systems for pantoprazole sodium for the treatment of hyperacidity was successfully developed and the release of the drug was sharp and complete after the lag time which is necessary for any pulsatile drug delivery systems.   


2019 ◽  
Vol 11 (1) ◽  
pp. 247 ◽  
Author(s):  
Shahid Ud Din Wani ◽  
Gangadharappa H. V. ◽  
Ashish N. P.

Objective: The aim of the present work was to formulate silk fibroin (SF) nanospheres (NS’s) for drug delivery application. The current study was designed to advance the water solubility and bio-availability of telmisartan by nanoprecipitation method.Methods: SF NS’s loaded with TS were prepared by nanoprecipitation method. The drug was dissolved in aqueous solution of SF by using acetone as a non-solvent. The prepared NS’s were then characterized by FTIR, X-ray diffraction and zeta potential, and were evaluated for its, surface morphology, %drug content, encapsulation efficiency and in vitro drug release.Results: The evaluation results of SF NS’s loaded of TS showed 74.22±0.17 % entrapment efficiency, 35.21±0.02 % of drug loading, and-4.9 mV to-13.6 mV of zeta potential due to the proper bounding of TS with the β-sheets of SF, the particle size reported was within the size range of 160-186 nm having smooth surface and were spherical in shape. The SFNS’s pattern switched from random coil to β-sheet formation on treating with acetone. FTIR and DSC studies marked no such inter-molecular interactions between SF and drug molecules. The % cumulative in vitro drug release from SF NS’s exhibited quick burst release. The in vitro cumulative drug release of SF NS’s of TS it was found that about 74% of the drug was released within 8 h and about 96% of drug released at 24 hr. The rate of drug release increased with the increase in SF ratio.Conclusion: It is believed that these SF NS’s will find potential applications in drug delivery release as drug carriers, especially poor water-soluble drugs. All these results proposed that SF NS’s are eventuality handy in various drug delivery systems.


2013 ◽  
Vol 1 (04) ◽  
pp. 64-70
Author(s):  
Renu Dinkar ◽  
Govind Mohan ◽  
Kumud Upadhyaya

Pulsatile release profile is characterized by a lag time followed by rapid and complete drug release. Pulsatile drug delivery systems are classified into time-controlled and site-specific delivery systems. The lag time is taken as the time of less than 10% drug release. The objective of present study was to develop a pulsatile compression coated tablet. The system was developed into two steps i.e. firstly core tablet was prepared containing Nifidipine; secondly core tablet was coated with polymer blend of ethyl cellulose (water insoluble polymer) and Eudragit L 100 (Enteric polymer). From the study it was concluded that the formulation having a coating level of 50% w/w of core and weight ratio of ethyl cellulose to Eudragit L 100 (20%) showed lesser release profile as compared to other formulation i.e. 52.83% in 12hrs. As we increase the weight ratio of ethyl cellulose to Eudragit L 100 better entrapment of drug leading to controlled release of drug.


2014 ◽  
Vol 1 (1) ◽  
pp. 15 ◽  
Author(s):  
Rajesh A Keraliya ◽  
Madhabhai M Patel

A method for the development of press coated tablet of atenolol for pulsatile delivery was investigated for chronotherapy of hypertension. Effect of viscosity of Hydroxypropylcellulose (HPC) on pulsatile release of atenlol was studied by press coating atenolol core tablet using different viscosity grade HPC and varying coat weight. L-HPC, M-HPC and H-HPC viscosity garde with 75, 100 and 150 mg coat weight were press coated over atenolol core tablets to delay release of atenolol. The batches, HP1-HP9, exhibited an increase in lag time in response to increase in viscosity and coat weight. Two of the batches HP5 and HP7 have shown a burst release of atenolol after 6.5 and 6.0 h lag time respectively, which is suitable for pulsatile drug delivery of atenolol for chronotherapy of hypertension.


Author(s):  
PASHAM SOWMYA ◽  
VENKATESH DP ◽  
SUJIT NAYEK

location at a particular time. Some of the conditions under which pulsatile drug delivery system is positive include duodenal ulcer, cardiovascular disease, arthritis, asthma, diabetes, neurological disorder, cancer, hypertension, and hypercholesterolemia. Pulsatile drug delivery systems are essentially time-controlled drug delivery systems in which the lag time is regulated independently of environmental factors such as pH, enzymes, gastrointestinal motility, etc. The theory justification for the use of pulsatile release is for drugs where a continuous release of drugs is not needed, i.e. a zero-order release. Drug administration in chronopharmacotherapy is coordinated with biological rhythms to achieve full therapeutic effect and minimize harm to the patient. This drug delivery system is designed to distribute drugs in accordance with body clock. The pulse must be designed in such a way as to achieve a total and rapid release after the lag time. Pulsatile drug delivery is therefore one device that provides strong promises of benefit to patients suffering from chronic conditions such as arthritis, asthma, hypertension by delivering medication at the right time, right place and in appropriate quantities. In recent pharmaceutical applications involving pulsatile delivery; multi-particulate dosage forms (e. g. pellets) over single-unit dosage forms are gaining more popularity. On the basis of methodologies, various pulsatile technologies have been developed, including ACCU-BREAKTM, AQUALON, CODAS ®, PRODAS ®, SODAS ®, MINITABS ®, DIFFUCAPS ®, OROS ® etc.


Clay Minerals ◽  
2018 ◽  
Vol 53 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Faezeh Hosseini ◽  
Farzaneh Hosseini ◽  
Seyyed Mehdi Jafari ◽  
Azade Taheri

ABSTRACTLocal chemotherapy with biocompatible drug-delivery systems prolongs survival in patients. Due to the biocompatibility and high loading capacity, bentonite nanoclay is a good candidate for the fabrication of drug-delivery vehicles. In this study, doxorubicin-bentonite nanoclay complex (DOX-Bent complex) was prepared for the first time as a sustained-release drug-delivery system for intratumoural chemotherapy of melanoma. An efficient loading of DOX on 1 mg of bentonite nanoclay as high as 994.45 ± 4.9 µg was obtained at a 30:1 DOX:bentonite nanoclay mass ratio. The DOX-Bent complex showed a low initial burst release of DOX in the first 24 h of release, followed by a sustained-release pattern for 21 days. The cumulativein vitrorelease of DOX from the DOX-Bent complex at pHs 6.5 and 7.4 revealed that the DOX-Bent complex can distinguish between tumour and normal tissues and express specific drug release at the tumour site. The results of cytotoxicity experiments indicated that the release pattern of DOX can supply sufficient DOX to inhibit growth of the melanoma cancer cell with an IC50 of 0.29 ± 0.07 µg/mL. It is thus suggested that the DOX-Bent complex be introduced as a drug-delivery system for effective local cancer therapy.


2019 ◽  
Author(s):  
Sanobar Khan ◽  
James McCabe ◽  
Kathryn Hill ◽  
Paul Beales

<p>The anticipated benefits of nano-formulations for drug delivery are well known: for nanomedicines to achieve this potential, new materials are required with predictive and tuneable properties. Excretion of excipients following delivery is advantageous to minimise the possibility of adverse effects; biodegradability to non-toxic products is therefore desirable. With this in mind, we aim to develop tuneable hybrid lipid-block copolymer vesicle formulations where the hydrophilic polymer block is polyethylene glycol (PEG), which has accepted biocompatibility, and the hydrophobic block of the polymer is biodegradable: polycaprolactone (PCL) or polylactide (PLA). We investigate five different block copolymers for the formation of 1:1 phospholipid:polymer hybrid vesicles, compare their properties to the appropriate unitary liposome (POPC) and polymersome systems and assess their potential for future development as nanomedicine formulations. The PEG-PCL polymers under investigation do not form polymersomes and exhibit poor colloidal and/or encapsulation stability in hybrid formulations with lipids. The properties of PEG-PLA hybrid vesicles are found to be more encouraging: they have much enhanced passive loading of a hydrophilic small molecule (carboxyfluorescein) compared to their respective polymersomes and exhibit more favourable release kinetics in the presence of serum compared to the liposome. Significantly, burst release from hybrid vesicles can be substantially reduced by making the polymer components of the hybrid vesicle a mixture containing 10 mol% of PEG<sub>16</sub>-PLA<sub>25</sub> that is intermediate in size between the phospholipid and larger PEG<sub>45</sub>-PLA<sub>54</sub> components. We conclude that hybrid lipid/PEG-PLA vesicles warrant further assessment and development as candidate drug delivery systems.</p>


2019 ◽  
Author(s):  
Sanobar Khan ◽  
James McCabe ◽  
Kathryn Hill ◽  
Paul Beales

<p>The anticipated benefits of nano-formulations for drug delivery are well known: for nanomedicines to achieve this potential, new materials are required with predictive and tuneable properties. Excretion of excipients following delivery is advantageous to minimise the possibility of adverse effects; biodegradability to non-toxic products is therefore desirable. With this in mind, we aim to develop tuneable hybrid lipid-block copolymer vesicle formulations where the hydrophilic polymer block is polyethylene glycol (PEG), which has accepted biocompatibility, and the hydrophobic block of the polymer is biodegradable: polycaprolactone (PCL) or polylactide (PLA). We investigate five different block copolymers for the formation of 1:1 phospholipid:polymer hybrid vesicles, compare their properties to the appropriate unitary liposome (POPC) and polymersome systems and assess their potential for future development as nanomedicine formulations. The PEG-PCL polymers under investigation do not form polymersomes and exhibit poor colloidal and/or encapsulation stability in hybrid formulations with lipids. The properties of PEG-PLA hybrid vesicles are found to be more encouraging: they have much enhanced passive loading of a hydrophilic small molecule (carboxyfluorescein) compared to their respective polymersomes and exhibit more favourable release kinetics in the presence of serum compared to the liposome. Significantly, burst release from hybrid vesicles can be substantially reduced by making the polymer components of the hybrid vesicle a mixture containing 10 mol% of PEG<sub>16</sub>-PLA<sub>25</sub> that is intermediate in size between the phospholipid and larger PEG<sub>45</sub>-PLA<sub>54</sub> components. We conclude that hybrid lipid/PEG-PLA vesicles warrant further assessment and development as candidate drug delivery systems.</p>


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 975
Author(s):  
Shahrukh Zaman Akash ◽  
Farjana Yesmin Lucky ◽  
Murad Hossain ◽  
Asim Kumar Bepari ◽  
G. M. Sayedur Rahman ◽  
...  

The development of externally controlled drug delivery systems that can rapidly trigger drug release is widely expected to change the landscape of future drug carriers. In this study, a drug delivery system was developed for on-demand therapeutic effects. The thermoresponsive paraffin film can be loaded on the basis of therapeutic need, including local anesthetic (lidocaine) or topical antibiotic (neomycin), controlled remotely by a portable mini-heater. The application of mild temperature (45 °C) to the drug-loaded paraffin film allowed a rapid stimulus response within a short time (5 min). This system exploits regular drug release and the rapid generation of mild heat to trigger a burst release of 80% within 6 h of any locally administered drug. The in vitro drug release studies and in vivo therapeutic activity were observed for local anesthesia and wound healing using a neomycin-loaded film. The studies demonstrated on-demand drug release with minimized inflammation and microbial infection. This temperature-responsive drug-loaded film can be triggered remotely to provide flexible control of dose magnitude and timing. Our preclinical studies on these remotely adjustable drug delivery systems can significantly improve patient compliance and medical practice.


Sign in / Sign up

Export Citation Format

Share Document