CYP2D6 Inhibition by Selective Serotonin Reuptake Inhibitors: Analysis of Achievable Steady-State Plasma Concentrations and the Effect of Ultrarapid Metabolism at CYP2D6

Author(s):  
Y. W. Francis Lam ◽  
Andrea Gaedigk ◽  
Larry Ereshefsky ◽  
Cara L. Alfaro ◽  
Joe Simpson
Author(s):  
Marloes AM Peters ◽  
Martijn van Faassen ◽  
Wilhelmina HA de Jong ◽  
Grietje Bouma ◽  
Coby Meijer ◽  
...  

Background Selective serotonin reuptake inhibitors (SSRIs) block the serotonin transporter on neurons, but also on platelets, thus decreasing platelet serotonin concentrations in users of SSRIs. Data on plasma-free serotonin concentrations in SSRI users are lacking, while plasma-free serotonin is available for receptor binding and plays a role in several pathophysiological processes. We therefore measured the plasma-free and platelet serotonin concentrations in users of SSRIs and age-matched healthy controls, and we analysed plasma concentrations of the serotonin precursor tryptophan and serotonin metabolite 5-hydroxyindoleamineacetic acid (5-HIAA). Methods For this cross-sectional single-centre case control study, participants were recruited at the departments of Psychiatry and General Medicine. High-performance liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) was used to measure plasma-free and platelet serotonin, plasma tryptophan and 5-HIAA concentrations. Preanalytical conditions were optimized by careful blood collection, rapid sample handling, high-speed centrifugation, drug and diet restrictions and age-matched controls. Results In 64 SSRI users, median concentrations of plasma-free and platelet serotonin were 10-fold and 14-fold lower, respectively, than in 64 matched controls. Patients using higher dose SSRIs or those with higher affinity for the serotonin transporter had lower plasma-free and platelet serotonin concentrations. Compared with controls, SSRI users had similar median plasma tryptophan concentrations but slightly higher plasma 5-HIAA concentrations. Conclusion SSRI users have low platelet serotonin and low plasma-free serotonin. This could not be explained by lower concentrations of its precursor tryptophan, and only partially by increased breakdown to 5-HIAA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jeffrey R. Strawn ◽  
Ethan A. Poweleit ◽  
Chakradhara Rao S. Uppugunduri ◽  
Laura B. Ramsey

Therapeutic drug monitoring (TDM) is uncommon in child and adolescent psychiatry, particularly for selective serotonin reuptake inhibitors (SSRIs)—the first-line pharmacologic treatments for depressive and anxiety disorders. However, TDM in children and adolescents offers the opportunity to leverage individual variability of antidepressant pharmacokinetics to shed light on non-response and partial response, understand drug-drug interactions, evaluate adherence, and characterize the impact of genetic and developmental variation in pharmacokinetic genes. This perspective aims to educate clinicians about TDM principles and examines evolving uses of TDM in SSRI-treated youths and their early applications in clinical practice, as well as barriers to TDM in pediatric patients. First, the impact of pharmacokinetic genes on SSRI pharmacokinetics in youths could be used to predict tolerability and response for some SSRIs (e.g., escitalopram). Second, plasma concentrations are significantly influenced by adherence, which may relate to decreased efficacy. Third, pharmacometric analyses reveal interactions with proton pump inhibitors, oral contraceptives, cannabinoids, and SSRIs in youths. Rapid developments in TDM and associated modeling have enhanced the understanding of variation in SSRI pharmacokinetics, although the treatment of anxiety and depressive disorders with SSRIs in youths often remains a trial-and-error process.


Sign in / Sign up

Export Citation Format

Share Document