Pest management in rain-fed crops in the semi-arid tropics: Prospects and problems

2016 ◽  
Author(s):  
Sumit Vashisth
Keyword(s):  
Author(s):  
Jyoti Chauhan ◽  
Ishan Saini ◽  
Tarun Kumar ◽  
Prashant Kaushik

Species of Acacia have been extensively entrenched in the tropical, and semi-arid regions as well as in the southern hemisphere. Acacia species have been bounteous faces the pest and pathogenic pressure. Integrated Pest Management (IPM) is an immensely important aspect of producing a healthy Acacia plantation without harmful impacts on the environment. Here an attempt was made to determine the possibilities of integrated pest management for Acacia. Overall, this information will be helpful to increase awareness about the integrated pest management of the members of the genus Acacia.


2021 ◽  
Vol 8 (2) ◽  
pp. 112-116
Author(s):  
BHANWAR LAL JAKHAR ◽  
AS BALODA ◽  
MD CHOUDHARY ◽  
KK SAINI ◽  
ML JAKHAR ◽  
...  

White grubs are the major insect pests of cultivated plants in semi arid agro-ecosystem of Rajasthan. It is important to understand diversity, abundance and distribution of scarabaeid beetles for planning effective pest management programme. The experimental data were collected from nine locations in three different ecosystems in Kharif season of year 2019. Species identification revealed that there was total nine species were recorded from 18885 specimens collected. The identified species were belongs under two subfamilies of   Scarabaeidae family. Maximum specimens were collected in the month of July from selected sites. When species diversity was compared among different locations, it was found that Shannon Wiener diversity index varied from 1.235 to 1.095, which indicates that species were less diverse but frequently present. The present study can be   used to formulate the integrated pest management strategies based on most abundance and diverse scarabaeids in semi-arid agro-ecosystem of Rajasthan.


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


2020 ◽  
Author(s):  
Arindam Malakar ◽  
Michael Kaiser ◽  
Daniel D. Snow ◽  
Harkamal Walia ◽  
Chittaranjan Ray

Author(s):  
I.G.C. Kerr ◽  
J.M. Williams ◽  
W.D. Ross ◽  
J.M. Pollard

The European rabbit (Oryctolagus cuniculus) introduced into New Zealand in the 183Os, has consistently flourished in Central Otago, the upper Waitaki, and inland Marlborough, all areas of mediterranean climate. It has proved difficult to manage in these habitats. The 'rabbit problem' is largely confined to 105,000 ha of low producing land mostly in semi arid areas of Central Otago. No field scale modifications of the natural habitat have been successful in limiting rabbit numbers. The costs of control exceed the revenue from the land and continued public funding for control operations appears necessary. A system for classifying land according to the degree of rabbit proneness is described. Soil survey and land classification information for Central Otago is related to the distribution and density of rabbits. This intormation can be used as a basis for defining rabbit carrying capacity and consequent land use constraints and management needs. It is concluded that the natural rabbit carrying capacity of land can be defined by reference to soil survey information and cultural modification to the natural vegetation. Classification of land according to rabbit proneness is proposed as a means of identifying the need for, and allocation of, public funding tor rabbit management. Keywords: Rabbit habitat, rabbit proneness, use of rabbit prone land.


2007 ◽  
Vol 23 (5) ◽  
pp. 546-555 ◽  
Author(s):  
R. Burgos ◽  
L.J. Odens ◽  
R.J. Collier ◽  
L.H. Baumgard ◽  
M.J. VanBaale

2003 ◽  
Vol 51 (2) ◽  
pp. 237
Author(s):  
G. Vida
Keyword(s):  
New York ◽  

D. Pimentel (Ed.): Encyclopedia of Pest Management. Marcel Dekker, Inc., New York, Basel, 2002. 929 pp. ISBN 0-8247-0632-0


2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


Sign in / Sign up

Export Citation Format

Share Document