scholarly journals Dynamically Identifying Deep Multimodal Features for Image Privacy Prediction

Author(s):  
Ashwini Tonge ◽  
Cornelia Caragea

With millions of images shared online, privacy concerns are on the rise. In this paper, we propose an approach to image privacy prediction by dynamically identifying powerful features corresponding to objects, scene context, and image tags derived from Convolutional Neural Networks for each test image. Specifically, our approach identifies the set of most “competent” features on the fly, according to each test image whose privacy has to be predicted. Experimental results on thousands of Flickr images show that our approach predicts the sensitive (or private) content more accurately than the models trained on each individual feature set (object, scene, and tags alone) or their combination.

Author(s):  
Sachin B. Jadhav

<span lang="EN-US">Plant pathologists desire soft computing technology for accurate and reliable diagnosis of plant diseases. In this study, we propose an efficient soybean disease identification method based on a transfer learning approach by using a pre-trained convolutional neural network (CNN’s) such as AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201. The proposed convolutional neural networks were trained using 1200 plant village image dataset of diseased and healthy soybean leaves, to identify three soybean diseases out of healthy leaves. Pre-trained CNN used to enable a fast and easy system implementation in practice. We used the five-fold cross-validation strategy to analyze the performance of networks. In this study, we used a pre-trained convolutional neural network as feature extractors and classifiers. The experimental results based on the proposed approach using pre-trained AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201 networks achieve an accuracy of 95%, 96.4 %, 96.4 %, 92.1%, 93.6% respectively. The experimental results for the identification of soybean diseases indicated that the proposed networks model achieves the highest accuracy</span>


Author(s):  
Yusuke Sugawara ◽  
Sayaka Shiota ◽  
Hitoshi Kiya

AbstractIt is well-known that a number of convolutional neural networks (CNNs) generate checkerboard artifacts in both of two processes: forward-propagation of upsampling layers and backpropagation of convolutional layers. A condition for avoiding the artifacts is proposed in this paper. So far, these artifacts have been studied mainly for linear multirate systems, but the conventional condition for avoiding them cannot be applied to CNNs due to the non-linearity of CNNs. We extend the avoidance condition for CNNs and apply the proposed structure to typical CNNs to confirm whether the novel structure is effective. Experimental results demonstrate that the proposed structure can perfectly avoid generating checkerboard artifacts while keeping the excellent properties that CNNs have.


Author(s):  
Shuqin Gu ◽  
Yuexian Hou ◽  
Lipeng Zhang ◽  
Yazhou Zhang

Although Deep Neural Networks (DNNs) have achieved excellent performance in many tasks, improving the generalization capacity of DNNs still remains a challenge. In this work, we propose a novel regularizer named Ensemble-based Decorrelation Method (EDM), which is motivated by the idea of the ensemble learning to improve generalization capacity of DNNs. EDM can be applied to hidden layers in fully connected neural networks or convolutional neural networks. We treat each hidden layer as an ensemble of several base learners through dividing all the hidden units into several non-overlap groups, and each group will be viewed as a base learner. EDM encourages DNNs to learn more diverse representations by minimizing the covariance between all base learners during the training step. Experimental results on MNIST and CIFAR datasets demonstrate that EDM can effectively reduce the overfitting and improve the generalization capacity of DNNs  


Author(s):  
Hao Li ◽  
Maoguo Gong

Convolutional neural networks (CNNs) have achieved breakthrough performance in many pattern recognition tasks. In order to distinguish the reliable data from the noisy and confusing data, we improve CNNs with self-paced learning (SPL) for enhancing the learning robustness of CNNs. In the proposed self-paced convolutional network (SPCN), each sample is assigned to a weight to reflect the easiness of the sample. Then a dynamic self-paced function is incorporated into the leaning objective of CNN to jointly learn the parameters of CNN and the latent weight variable. SPCN learns the samples from easy to complex and the sample weights can dynamically control the learning rates for converging to better values. To gain more insights of SPCN, theoretical studies are conducted to show that SPCN converges to a stationary solution and is robust to the noisy and confusing data. Experimental results on MNIST and rectangles datasets demonstrate that the proposed method outperforms baseline methods.


Author(s):  
Hmidi Alaeddine ◽  
Malek Jihene

The reduction in the size of convolution filters has been shown to be effective in image classification models. They make it possible to reduce the calculation and the number of parameters used in the operations of the convolution layer while increasing the efficiency of the representation. The authors present a deep architecture for classification with improved performance. The main objective of this architecture is to improve the main performances of the network thanks to a new design based on CONVblock. The proposal is evaluated on a classification database: CIFAR-10 and MNIST. The experimental results demonstrate the effectiveness of the proposed method. This architecture offers an error of 1.4% on CIFAR-10 and 0.055% on MNIST.


2021 ◽  
pp. 1-11
Author(s):  
Tianshi Mu ◽  
Kequan Lin ◽  
Huabing Zhang ◽  
Jian Wang

Deep learning is gaining significant traction in a wide range of areas. Whereas, recent studies have demonstrated that deep learning exhibits the fatal weakness on adversarial examples. Due to the black-box nature and un-transparency problem of deep learning, it is difficult to explain the reason for the existence of adversarial examples and also hard to defend against them. This study focuses on improving the adversarial robustness of convolutional neural networks. We first explore how adversarial examples behave inside the network through visualization. We find that adversarial examples produce perturbations in hidden activations, which forms an amplification effect to fool the network. Motivated by this observation, we propose an approach, termed as sanitizing hidden activations, to help the network correctly recognize adversarial examples by eliminating or reducing the perturbations in hidden activations. To demonstrate the effectiveness of our approach, we conduct experiments on three widely used datasets: MNIST, CIFAR-10 and ImageNet, and also compare with state-of-the-art defense techniques. The experimental results show that our sanitizing approach is more generalized to defend against different kinds of attacks and can effectively improve the adversarial robustness of convolutional neural networks.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Baogui Xin ◽  
Wei Peng

It has been a hot and challenging topic to predict the chaotic time series in the medium-to-long term. We combine autoencoders and convolutional neural networks (AE-CNN) to capture the intrinsic certainty of chaotic time series. We utilize the transfer learning (TL) theory to improve the prediction performance in medium-to-long term. Thus, we develop a prediction scheme for chaotic time series-based AE-CNN and TL named AE-CNN-TL. Our experimental results show that the proposed AE-CNN-TL has much better prediction performance than any one of the following: AE-CNN, ARMA, and LSTM.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2627
Author(s):  
Mei-Yi Wu ◽  
Jia-Hong Lee ◽  
Chuan-Ying Hsueh

In recent years, the technology of artificial intelligence (AI) and robots is rapidly spreading to countries around the world. More and more scholars and industry experts have proposed AI deep learning models and methods to solve human life problems and improve work efficiency. Modern people’s lives are very busy, which led us to investigate whether the demand for Bento buffet cafeterias has gradually increased in Taiwan. However, when eating at a buffet in a cafeteria, people often encounter two problems. The first problem is that customers need to queue up to check out after they have selected and filled their dishes from the buffet. However, it always takes too much time waiting, especially at lunch or dinner time. The second problem is sometimes customers question the charges calculated by cafeteria staff, claiming they are too expensive at the checkout counter. Therefore, it is necessary to develop an AI-enabled checkout system. The AI-enabled self-checkout system will help the Bento buffet cafeterias reduce long lineups without the need to add additional workers. In this paper, we used computer vision and deep-learning technology to design and implement an AI-enabled checkout system for Bento buffet cafeterias. The prototype contains an angle steel shelf, a Kinect camera, a light source, and a desktop computer. Six baseline convolutional neural networks were applied for comparison on food recognition. In our experiments, there were 22 different food categories in a Bento buffet cafeteria employed. Experimental results show that the inception_v4 model can achieve the highest average validation accuracy of 99.11% on food recognition, but it requires the most training and recognition time. AlexNet model achieves a 94.5% accuracy and requires the least training time and recognition time. We propose a hierarchical approach with two stages to achieve good performance in both the recognition accuracy rate and the required training and recognition time. The approach is designed to perform the first step of identification and the second step of recognizing similar food images, respectively. Experimental results show that the proposed approach can achieve a 96.3% accuracy rate on our test dataset and required very little recognition time for input images. In addition, food volumes could be estimated using the depth images captured by the Kinect camera, and a framework of visual checkout system was successfully built.


Author(s):  
Yao Lu ◽  
Guangming Lu ◽  
Yuanrong Xu ◽  
Bob Zhang

In order to address the overfitting problem caused by the small or simple training datasets and the large model’s size in Convolutional Neural Networks (CNNs), a novel Auto Adaptive Regularization (AAR) method is proposed in this paper. The relevant networks can be called AAR-CNNs. AAR is the first method using the “abstraction extent” (predicted by AE net) and a tiny learnable module (SE net) to auto adaptively predict more accurate and individualized regularization information. The AAR module can be directly inserted into every stage of any popular networks and trained end to end to improve the networks’ flexibility. This method can not only regularize the network at both the forward and the backward processes in the training phase, but also regularize the network on a more refined level (channel or pixel level) depending on the abstraction extent’s form. Comparative experiments are performed on low resolution ImageNet, CIFAR and SVHN datasets. Experimental results show that the AAR-CNNs can achieve state-of-the-art performances on these datasets.


2021 ◽  
Vol 2021 (1) ◽  
pp. 85-106
Author(s):  
Arezoo Rajabi ◽  
Rakesh B. Bobba ◽  
Mike Rosulek ◽  
Charles V. Wright ◽  
Wu-chi Feng

AbstractImage hosting platforms are a popular way to store and share images with family members and friends. However, such platforms typically have full access to images raising privacy concerns. These concerns are further exacerbated with the advent of Convolutional Neural Networks (CNNs) that can be trained on available images to automatically detect and recognize faces with high accuracy.Recently, adversarial perturbations have been proposed as a potential defense against automated recognition and classification of images by CNNs. In this paper, we explore the practicality of adversarial perturbation-based approaches as a privacy defense against automated face recognition. Specifically, we first identify practical requirements for such approaches and then propose two practical adversarial perturbation approaches – (i) learned universal ensemble perturbations (UEP), and (ii) k-randomized transparent image overlays (k-RTIO) that are semantic adversarial perturbations. We demonstrate how users can generate effective transferable perturbations under realistic assumptions with less effort.We evaluate the proposed methods against state-of-theart online and offline face recognition models, Clarifai.com and DeepFace, respectively. Our findings show that UEP and k-RTIO respectively achieve more than 85% and 90% success against face recognition models. Additionally, we explore potential countermeasures that classifiers can use to thwart the proposed defenses. Particularly, we demonstrate one effective countermeasure against UEP.


Sign in / Sign up

Export Citation Format

Share Document