automated recognition
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 123)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 680
Author(s):  
Yanchi Li ◽  
Guanyu Chen ◽  
Xiang Li

The automated recognition of optical chemical structures, with the help of machine learning, could speed up research and development efforts. However, historical sources often have some level of image corruption, which reduces the performance to near zero. To solve this downside, we need a dependable algorithmic program to help chemists to further expand their research. This paper reports the results of research conducted for the Bristol-Myers Squibb-Molecular Translation competition, which was held on Kaggle and which invited participants to convert old chemical images to their underlying chemical structures, annotated as InChI text; we define this work as molecular translation. We proposed a model based on a transformer, which can be utilized in molecular translation. To better capture the details of the chemical structure, the image features we want to extract need to be accurate at the pixel level. TNT is one of the existing transformer models that can meet this requirement. This model was originally used for image classification, and is essentially a transformer-encoder, which cannot be utilized for generation tasks. On the other hand, we believe that TNT cannot integrate the local information of images well, so we improve the core module of TNT—TNT block—and propose a novel module—Deep TNT block—by stacking the module to form an encoder structure, and then use the vanilla transformer-decoder as a decoder, forming a chemical formula generation model based on the encoder–decoder structure. Since molecular translation is an image-captioning task, we named it the Image Captioning Model based on Deep TNT (ICMDT). A comparison with different models shows that our model has benefits in each convergence speed and final description accuracy. We have designed a complete process in the model inference and fusion phase to further enhance the final results.


2021 ◽  
pp. 81-95
Author(s):  
Eduardo Xamena ◽  
Héctor Emanuel Barboza ◽  
Carlos Ismael Orozco

The task of automated recognition of handwritten texts requires various phases and technologies both optical and language related. This article describes an approach for performing this task in a comprehensive manner, using machine learning throughout all phases of the process. In addition to the explanation of the employed methodology, it describes the process of building and evaluating a model of manuscript recognition for the Spanish language. The original contribution of this article is given by the training and evaluation of Offline HTR models for Spanish language manuscripts, as well as the evaluation of a platform to perform this task in a complete way. In addition, it details the work being carried out to achieve improvements in the models obtained, and to develop new models for different complex corpora that are more difficult for the HTR task.


2021 ◽  
Author(s):  
Elias Manos ◽  
Amit Hasan ◽  
Mahendra Udawalpola ◽  
Anna Liljedahl ◽  
Chandi Witharana

2021 ◽  
Vol 11 (24) ◽  
pp. 11901
Author(s):  
Rabia Saleem ◽  
Jamal Hussain Shah ◽  
Muhammad Sharif ◽  
Mussarat Yasmin ◽  
Hwan-Seung Yong ◽  
...  

Mango fruit is in high demand. So, the timely control of mango plant diseases is necessary to gain high returns. Automated recognition of mango plant leaf diseases is still a challenge as manual disease detection is not a feasible choice in this computerized era due to its high cost and the non-availability of mango experts and the variations in the symptoms. Amongst all the challenges, the segmentation of diseased parts is a big issue, being the pre-requisite for correct recognition and identification. For this purpose, a novel segmentation approach is proposed in this study to segment the diseased part by considering the vein pattern of the leaf. This leaf vein-seg approach segments the vein pattern of the leaf. Afterward, features are extracted and fused using canonical correlation analysis (CCA)-based fusion. As a final identification step, a cubic support vector machine (SVM) is implemented to validate the results. The highest accuracy achieved by this proposed model is 95.5%, which proves that the proposed model is very helpful to mango plant growers for the timely recognition and identification of diseases.


Author(s):  
Kulendu Kashyap Chakraborty ◽  
Rashmi Mukherjee ◽  
Chandan Chakroborty ◽  
Kangkana Bora

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wen Pan ◽  
Xujia Li ◽  
Weijia Wang ◽  
Linjing Zhou ◽  
Jiali Wu ◽  
...  

Abstract Background Development of a deep learning method to identify Barrett's esophagus (BE) scopes in endoscopic images. Methods 443 endoscopic images from 187 patients of BE were included in this study. The gastroesophageal junction (GEJ) and squamous-columnar junction (SCJ) of BE were manually annotated in endoscopic images by experts. Fully convolutional neural networks (FCN) were developed to automatically identify the BE scopes in endoscopic images. The networks were trained and evaluated in two separate image sets. The performance of segmentation was evaluated by intersection over union (IOU). Results The deep learning method was proved to be satisfying in the automated identification of BE in endoscopic images. The values of the IOU were 0.56 (GEJ) and 0.82 (SCJ), respectively. Conclusions Deep learning algorithm is promising with accuracies of concordance with manual human assessment in segmentation of the BE scope in endoscopic images. This automated recognition method helps clinicians to locate and recognize the scopes of BE in endoscopic examinations.


Sign in / Sign up

Export Citation Format

Share Document