scholarly journals Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization

Author(s):  
Bryan Wilder ◽  
Bistra Dilkina ◽  
Milind Tambe

Creating impact in real-world settings requires artificial intelligence techniques to span the full pipeline from data, to predictive models, to decisions. These components are typically approached separately: a machine learning model is first trained via a measure of predictive accuracy, and then its predictions are used as input into an optimization algorithm which produces a decision. However, the loss function used to train the model may easily be misaligned with the end goal, which is to make the best decisions possible. Hand-tuning the loss function to align with optimization is a difficult and error-prone process (which is often skipped entirely).We focus on combinatorial optimization problems and introduce a general framework for decision-focused learning, where the machine learning model is directly trained in conjunction with the optimization algorithm to produce highquality decisions. Technically, our contribution is a means of integrating common classes of discrete optimization problems into deep learning or other predictive models, which are typically trained via gradient descent. The main idea is to use a continuous relaxation of the discrete problem to propagate gradients through the optimization procedure. We instantiate this framework for two broad classes of combinatorial problems: linear programs and submodular maximization. Experimental results across a variety of domains show that decisionfocused learning often leads to improved optimization performance compared to traditional methods. We find that standard measures of accuracy are not a reliable proxy for a predictive model’s utility in optimization, and our method’s ability to specify the true goal as the model’s training objective yields substantial dividends across a range of decision problems.

Author(s):  
Dwiti Krishna Bebarta ◽  
Birendra Biswal

Automated feature engineering is to build predictive models that are capable of transforming raw data into features, that is, creation of new features from existing ones on various datasets to create meaningful features and examining their effect on planned model performances on various parameters like accuracy, efficiency, and prevent data leakage. So the challenges for experts are to plan computationally efficient and effective machine, learning-based predictive models. This chapter will provide an imminent to the important intelligent techniques that could be utilized to enhance predictive analytics by using an advanced form of the predictive model. A computationally efficient and effective machine learning model using functional link artificial neural network (FLANN) is discussed to design for predicting the business needs with a high degree of accuracy for the traders or investors. The performance of the models using FLANN is encouraging when scientifically analyzed the experimental results of the model using different statistical analyses.


2020 ◽  
Author(s):  
Ali Vakilian

Large volumes of available data have led to the emergence of new computational models for data analysis. One such model is captured by the notion of streaming algorithms: given a sequence of N items, the goal is to compute the value of a given function of the input items by a small number of passes and using a sublinear amount of space in N. Streaming algorithms have applications in many areas such as networking and large scale machine learning. Despite a huge amount of work on this area over the last two decades, there are multiple aspects of streaming algorithms that remained poorly understood, such as (a) streaming algorithms for combinatorial optimization problems and (b) incorporating modern machine learningtechniques in the design of streaming algorithms. In the first part of this thesis, we will describe (essentially) optimal streaming algorithms for set cover and maximum coverage, two classic problems in combinatorial optimization. Next, in the second part, we will show how to augment classic streaming algorithms of the frequency estimation and low-rank approximation problems with machine learning oracles in order to improve their space-accuracy tradeoffs. The new algorithms combine the benefits of machine learning with the formal guarantees available through algorithm design theory.


Algorithms ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 286
Author(s):  
Ali Ahmid ◽  
Thien-My Dao ◽  
Ngan Van Le

Solving of combinatorial optimization problems is a common practice in real-life engineering applications. Trusses, cranes, and composite laminated structures are some good examples that fall under this category of optimization problems. Those examples have a common feature of discrete design domain that turn them into a set of NP-hard optimization problems. Determining the right optimization algorithm for such problems is a precious point that tends to impact the overall cost of the design process. Furthermore, reinforcing the performance of a prospective optimization algorithm reduces the design cost. In the current study, a comprehensive assessment criterion has been developed to assess the performance of meta-heuristic (MH) solutions in the domain of structural design. Thereafter, the proposed criterion was employed to compare five different variants of Ant Colony Optimization (ACO). It was done by using a well-known structural optimization problem of laminate Stacking Sequence Design (SSD). The initial results of the comparison study reveal that the Hyper-Cube Framework (HCF) ACO variant outperforms the others. Consequently, an investigation of further improvement led to introducing an enhanced version of HCFACO (or EHCFACO). Eventually, the performance assessment of the EHCFACO variant showed that the average practical reliability became more than twice that of the standard ACO, and the normalized price decreased more to hold at 28.92 instead of 51.17.


Sign in / Sign up

Export Citation Format

Share Document