scholarly journals Robust Multi-Agent Reinforcement Learning via Minimax Deep Deterministic Policy Gradient

Author(s):  
Shihui Li ◽  
Yi Wu ◽  
Xinyue Cui ◽  
Honghua Dong ◽  
Fei Fang ◽  
...  

Despite the recent advances of deep reinforcement learning (DRL), agents trained by DRL tend to be brittle and sensitive to the training environment, especially in the multi-agent scenarios. In the multi-agent setting, a DRL agent’s policy can easily get stuck in a poor local optima w.r.t. its training partners – the learned policy may be only locally optimal to other agents’ current policies. In this paper, we focus on the problem of training robust DRL agents with continuous actions in the multi-agent learning setting so that the trained agents can still generalize when its opponents’ policies alter. To tackle this problem, we proposed a new algorithm, MiniMax Multi-agent Deep Deterministic Policy Gradient (M3DDPG) with the following contributions: (1) we introduce a minimax extension of the popular multi-agent deep deterministic policy gradient algorithm (MADDPG), for robust policy learning; (2) since the continuous action space leads to computational intractability in our minimax learning objective, we propose Multi-Agent Adversarial Learning (MAAL) to efficiently solve our proposed formulation. We empirically evaluate our M3DDPG algorithm in four mixed cooperative and competitive multi-agent environments and the agents trained by our method significantly outperforms existing baselines.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sung-Jung Wang ◽  
S. K. Jason Chang

Autonomous buses are becoming increasingly popular and have been widely developed in many countries. However, autonomous buses must learn to navigate the city efficiently to be integrated into public transport systems. Efficient operation of these buses can be achieved by intelligent agents through reinforcement learning. In this study, we investigate the autonomous bus fleet control problem, which appears noisy to the agents owing to random arrivals and incomplete observation of the environment. We propose a multi-agent reinforcement learning method combined with an advanced policy gradient algorithm for this large-scale dynamic optimization problem. An agent-based simulation platform was developed to model the dynamic system of a fixed stop/station loop route, autonomous bus fleet, and passengers. This platform was also applied to assess the performance of the proposed algorithm. The experimental results indicate that the developed algorithm outperforms other reinforcement learning methods in the multi-agent domain. The simulation results also reveal the effectiveness of our proposed algorithm in outperforming the existing scheduled bus system in terms of the bus fleet size and passenger wait times for bus routes with comparatively lesser number of passengers.


2021 ◽  
Vol 11 (4) ◽  
pp. 1816
Author(s):  
Luyu Liu ◽  
Qianyuan Liu ◽  
Yong Song ◽  
Bao Pang ◽  
Xianfeng Yuan ◽  
...  

Collaborative control of a dual-arm robot refers to collision avoidance and working together to accomplish a task. To prevent the collision of two arms, the control strategy of a robot arm needs to avoid competition and to cooperate with the other one during motion planning. In this paper, a dual-arm deep deterministic policy gradient (DADDPG) algorithm is proposed based on deep reinforcement learning of multi-agent cooperation. Firstly, the construction method of a replay buffer in a hindsight experience replay algorithm is introduced. The modeling and training method of the multi-agent deep deterministic policy gradient algorithm is explained. Secondly, a control strategy is assigned to each robotic arm. The arms share their observations and actions. The dual-arm robot is trained based on a mechanism of “rewarding cooperation and punishing competition”. Finally, the effectiveness of the algorithm is verified in the Reach, Push, and Pick up simulation environment built in this study. The experiment results show that the robot trained by the DADDPG algorithm can achieve cooperative tasks. The algorithm can make the robots explore the action space autonomously and reduce the level of competition with each other. The collaborative robots have better adaptability to coordination tasks.


2021 ◽  
Vol 54 (5) ◽  
pp. 1-35
Author(s):  
Shubham Pateria ◽  
Budhitama Subagdja ◽  
Ah-hwee Tan ◽  
Chai Quek

Hierarchical Reinforcement Learning (HRL) enables autonomous decomposition of challenging long-horizon decision-making tasks into simpler subtasks. During the past years, the landscape of HRL research has grown profoundly, resulting in copious approaches. A comprehensive overview of this vast landscape is necessary to study HRL in an organized manner. We provide a survey of the diverse HRL approaches concerning the challenges of learning hierarchical policies, subtask discovery, transfer learning, and multi-agent learning using HRL. The survey is presented according to a novel taxonomy of the approaches. Based on the survey, a set of important open problems is proposed to motivate the future research in HRL. Furthermore, we outline a few suitable task domains for evaluating the HRL approaches and a few interesting examples of the practical applications of HRL in the Supplementary Material.


Author(s):  
Feng Pan ◽  
Hong Bao

This paper proposes a new approach of using reinforcement learning (RL) to train an agent to perform the task of vehicle following with human driving characteristics. We refer to the ideal of inverse reinforcement learning to design the reward function of the RL model. The factors that need to be weighed in vehicle following were vectorized into reward vectors, and the reward function was defined as the inner product of the reward vector and weights. Driving data of human drivers was collected and analyzed to obtain the true reward function. The RL model was trained with the deterministic policy gradient algorithm because the state and action spaces are continuous. We adjusted the weight vector of the reward function so that the value vector of the RL model could continuously approach that of a human driver. After dozens of rounds of training, we selected the policy with the nearest value vector to that of a human driver and tested it in the PanoSim simulation environment. The results showed the desired performance for the task of an agent following the preceding vehicle safely and smoothly.


2020 ◽  
Vol 34 (04) ◽  
pp. 3316-3323
Author(s):  
Qingpeng Cai ◽  
Ling Pan ◽  
Pingzhong Tang

Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider the deterministic value gradients to improve the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off between the variance of the value gradients and the model bias. Furthermore, to better combine the model-based deterministic value gradient estimators with the model-free deterministic policy gradient estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines.


2020 ◽  
Vol 34 (05) ◽  
pp. 7253-7260 ◽  
Author(s):  
Yuhang Song ◽  
Andrzej Wojcicki ◽  
Thomas Lukasiewicz ◽  
Jianyi Wang ◽  
Abi Aryan ◽  
...  

Learning agents that are not only capable of taking tests, but also innovating is becoming a hot topic in AI. One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logics and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided game set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide Python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard. All the implementations and accompanied tutorials have been open-sourced for the community at https://sites.google.com/view/arena-unity/.


Author(s):  
Thomas Recchia ◽  
Jae Chung ◽  
Kishore Pochiraju

As robotic systems become more prevalent, it is highly desirable for them to be able to operate in highly dynamic environments. A common approach is to use reinforcement learning to allow an agent controlling the robot to learn and adapt its behavior based on a reward function. This paper presents a novel multi-agent system that cooperates to control a single robot battle tank in a melee battle scenario, with no prior knowledge of its opponents’ strategies. The agents learn through reinforcement learning, and are loosely coupled by their reward functions. Each agent controls a different aspect of the robot’s behavior. In addition, the problem of delayed reward is addressed through a time-averaged reward applied to several sequential actions at once. This system was evaluated in a simulated melee combat scenario and was shown to learn to improve its performance over time. This was accomplished by each agent learning to pick specific battle strategies for each different opponent it faced.


Author(s):  
Haotian Fu ◽  
Hongyao Tang ◽  
Jianye Hao ◽  
Zihan Lei ◽  
Yingfeng Chen ◽  
...  

Deep Reinforcement Learning (DRL) has been applied to address a variety of cooperative multi-agent problems with either discrete action spaces or continuous action spaces. However, to the best of our knowledge, no previous work has ever succeeded in applying DRL to multi-agent problems with discrete-continuous hybrid (or parameterized) action spaces which is very common in practice. Our work fills this gap by proposing two novel algorithms: Deep Multi-Agent Parameterized Q-Networks (Deep MAPQN) and Deep Multi-Agent Hierarchical Hybrid Q-Networks (Deep MAHHQN). We follow the centralized training but decentralized execution paradigm: different levels of communication between different agents are used to facilitate the training process, while each agent executes its policy independently based on local observations during execution. Our empirical results on several challenging tasks (simulated RoboCup Soccer and game Ghost Story) show that both Deep MAPQN and Deep MAHHQN are effective and significantly outperform existing independent deep parameterized Q-learning method.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 129728-129741
Author(s):  
Hafiz Muhammad Raza Ur Rehman ◽  
Byung-Won On ◽  
Devarani Devi Ningombam ◽  
Sungwon Yi ◽  
Gyu Sang Choi

1995 ◽  
Vol 2 ◽  
pp. 475-500 ◽  
Author(s):  
A. Schaerf ◽  
Y. Shoham ◽  
M. Tennenholtz

We study the process of multi-agent reinforcement learning in the context ofload balancing in a distributed system, without use of either centralcoordination or explicit communication. We first define a precise frameworkin which to study adaptive load balancing, important features of which are itsstochastic nature and the purely local information available to individualagents. Given this framework, we show illuminating results on the interplaybetween basic adaptive behavior parameters and their effect on systemefficiency. We then investigate the properties of adaptive load balancing inheterogeneous populations, and address the issue of exploration vs.exploitation in that context. Finally, we show that naive use ofcommunication may not improve, and might even harm system efficiency.


Sign in / Sign up

Export Citation Format

Share Document