Preceding vehicle following algorithm with human driving characteristics

Author(s):  
Feng Pan ◽  
Hong Bao

This paper proposes a new approach of using reinforcement learning (RL) to train an agent to perform the task of vehicle following with human driving characteristics. We refer to the ideal of inverse reinforcement learning to design the reward function of the RL model. The factors that need to be weighed in vehicle following were vectorized into reward vectors, and the reward function was defined as the inner product of the reward vector and weights. Driving data of human drivers was collected and analyzed to obtain the true reward function. The RL model was trained with the deterministic policy gradient algorithm because the state and action spaces are continuous. We adjusted the weight vector of the reward function so that the value vector of the RL model could continuously approach that of a human driver. After dozens of rounds of training, we selected the policy with the nearest value vector to that of a human driver and tested it in the PanoSim simulation environment. The results showed the desired performance for the task of an agent following the preceding vehicle safely and smoothly.

Author(s):  
Zhan Shi ◽  
Xinchi Chen ◽  
Xipeng Qiu ◽  
Xuanjing Huang

Text generation is a crucial task in NLP. Recently, several adversarial generative models have been proposed to improve the exposure bias problem in text generation. Though these models gain great success, they still suffer from the problems of reward sparsity and mode collapse. In order to address these two problems, in this paper, we employ inverse reinforcement learning (IRL) for text generation. Specifically, the IRL framework learns a reward function on training data, and then an optimal policy to maximum the expected total reward. Similar to the adversarial models, the reward and policy function in IRL are optimized alternately. Our method has two advantages: (1) the reward function can produce more dense reward signals. (2) the generation policy, trained by ``entropy regularized'' policy gradient, encourages to generate more diversified texts. Experiment results demonstrate that our proposed method can generate higher quality texts than the previous methods.


2020 ◽  
Vol 14 (1) ◽  
pp. 117-150
Author(s):  
Alberto Maria Metelli ◽  
Matteo Pirotta ◽  
Marcello Restelli

Reinforcement Learning (RL) is an effective approach to solve sequential decision making problems when the environment is equipped with a reward function to evaluate the agent’s actions. However, there are several domains in which a reward function is not available and difficult to estimate. When samples of expert agents are available, Inverse Reinforcement Learning (IRL) allows recovering a reward function that explains the demonstrated behavior. Most of the classic IRL methods, in addition to expert’s demonstrations, require sampling the environment to evaluate each reward function, that, in turn, is built starting from a set of engineered features. This paper is about a novel model-free IRL approach that does not require to specify a function space where to search for the expert’s reward function. Leveraging on the fact that the policy gradient needs to be zero for an optimal policy, the algorithm generates an approximation space for the reward function, in which a reward is singled out employing a second-order criterion. After introducing our approach for finite domains, we extend it to continuous ones. The empirical results, on both finite and continuous domains, show that the reward function recovered by our algorithm allows learning policies that outperform those obtained with the true reward function, in terms of learning speed.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1121 ◽  
Author(s):  
Weiren Kong ◽  
Deyun Zhou ◽  
Zhen Yang ◽  
Yiyang Zhao ◽  
Kai Zhang

With the development of unmanned aerial vehicle (UAV) and artificial intelligence (AI) technology, Intelligent UAV will be widely used in future autonomous aerial combat. Previous researches on autonomous aerial combat within visual range (WVR) have limitations due to simplifying assumptions, limited robustness, and ignoring sensor errors. In this paper, in order to consider the error of the aircraft sensors, we model the aerial combat WVR as a state-adversarial Markov decision process (SA-MDP), which introduce the small adversarial perturbations on state observations and these perturbations do not alter the environment directly, but can mislead the agent into making suboptimal decisions. Meanwhile, we propose a novel autonomous aerial combat maneuver strategy generation algorithm with high-performance and high-robustness based on state-adversarial deep deterministic policy gradient algorithm (SA-DDPG), which add a robustness regularizers related to an upper bound on performance loss at the actor-network. At the same time, a reward shaping method based on maximum entropy (MaxEnt) inverse reinforcement learning algorithm (IRL) is proposed to improve the aerial combat strategy generation algorithm’s efficiency. Finally, the efficiency of the aerial combat strategy generation algorithm and the performance and robustness of the resulting aerial combat strategy is verified by simulation experiments. Our main contributions are three-fold. First, to introduce the observation errors of UAV, we are modeling air combat as SA-MDP. Second, to make the strategy network of air combat maneuver more robust in the presence of observation errors, we introduce regularizers into the policy gradient. Third, to solve the problem that air combat’s reward function is too sparse, we use MaxEnt IRL to design a shaping reward to accelerate the convergence of SA-DDPG.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 290 ◽  
Author(s):  
SeungYoon Choi ◽  
Tuyen Le ◽  
Quang Nguyen ◽  
Md Layek ◽  
SeungGwan Lee ◽  
...  

In this paper, we propose a controller for a bicycle using the DDPG (Deep Deterministic Policy Gradient) algorithm, which is a state-of-the-art deep reinforcement learning algorithm. We use a reward function and a deep neural network to build the controller. By using the proposed controller, a bicycle can not only be stably balanced but also travel to any specified location. We confirm that the controller with DDPG shows better performance than the other baselines such as Normalized Advantage Function (NAF) and Proximal Policy Optimization (PPO). For the performance evaluation, we implemented the proposed algorithm in various settings such as fixed and random speed, start location, and destination location.


2021 ◽  
Author(s):  
Stav Belogolovsky ◽  
Philip Korsunsky ◽  
Shie Mannor ◽  
Chen Tessler ◽  
Tom Zahavy

AbstractWe consider the task of Inverse Reinforcement Learning in Contextual Markov Decision Processes (MDPs). In this setting, contexts, which define the reward and transition kernel, are sampled from a distribution. In addition, although the reward is a function of the context, it is not provided to the agent. Instead, the agent observes demonstrations from an optimal policy. The goal is to learn the reward mapping, such that the agent will act optimally even when encountering previously unseen contexts, also known as zero-shot transfer. We formulate this problem as a non-differential convex optimization problem and propose a novel algorithm to compute its subgradients. Based on this scheme, we analyze several methods both theoretically, where we compare the sample complexity and scalability, and empirically. Most importantly, we show both theoretically and empirically that our algorithms perform zero-shot transfer (generalize to new and unseen contexts). Specifically, we present empirical experiments in a dynamic treatment regime, where the goal is to learn a reward function which explains the behavior of expert physicians based on recorded data of them treating patients diagnosed with sepsis.


2021 ◽  
Author(s):  
Amarildo Likmeta ◽  
Alberto Maria Metelli ◽  
Giorgia Ramponi ◽  
Andrea Tirinzoni ◽  
Matteo Giuliani ◽  
...  

AbstractIn real-world applications, inferring the intentions of expert agents (e.g., human operators) can be fundamental to understand how possibly conflicting objectives are managed, helping to interpret the demonstrated behavior. In this paper, we discuss how inverse reinforcement learning (IRL) can be employed to retrieve the reward function implicitly optimized by expert agents acting in real applications. Scaling IRL to real-world cases has proved challenging as typically only a fixed dataset of demonstrations is available and further interactions with the environment are not allowed. For this reason, we resort to a class of truly batch model-free IRL algorithms and we present three application scenarios: (1) the high-level decision-making problem in the highway driving scenario, and (2) inferring the user preferences in a social network (Twitter), and (3) the management of the water release in the Como Lake. For each of these scenarios, we provide formalization, experiments and a discussion to interpret the obtained results.


Author(s):  
Qingyuan Zheng ◽  
Duo Wang ◽  
Zhang Chen ◽  
Yiyong Sun ◽  
Bin Liang

Single-track two-wheeled robots have become an important research topic in recent years, owing to their simple structure, energy savings and ability to run on narrow roads. However, the ramp jump remains a challenging task. In this study, we propose to realize a single-track two-wheeled robot ramp jump. We present a control method that employs continuous action reinforcement learning techniques for single-track two-wheeled robot control. We design a novel reward function for reinforcement learning, optimize the dimensions of the action space, and enable training under the deep deterministic policy gradient algorithm. Finally, we validate the control method through simulation experiments and successfully realize the single-track two-wheeled robot ramp jump task. Simulation results validate that the control method is effective and has several advantages over high-dimension action space control, reinforcement learning control of sparse reward function and discrete action reinforcement learning control.


2020 ◽  
Vol 34 (04) ◽  
pp. 3316-3323
Author(s):  
Qingpeng Cai ◽  
Ling Pan ◽  
Pingzhong Tang

Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider the deterministic value gradients to improve the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off between the variance of the value gradients and the model bias. Furthermore, to better combine the model-based deterministic value gradient estimators with the model-free deterministic policy gradient estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines.


Author(s):  
Fangjian Li ◽  
John R Wagner ◽  
Yue Wang

Abstract Inverse reinforcement learning (IRL) has been successfully applied in many robotics and autonomous driving studies without the need for hand-tuning a reward function. However, it suffers from safety issues. Compared to the reinforcement learning (RL) algorithms, IRL is even more vulnerable to unsafe situations as it can only infer the importance of safety based on expert demonstrations. In this paper, we propose a safety-aware adversarial inverse reinforcement learning algorithm (S-AIRL). First, the control barrier function (CBF) is used to guide the training of a safety critic, which leverages the knowledge of system dynamics in the sampling process without training an additional guiding policy. The trained safety critic is then integrated into the discriminator to help discern the generated data and expert demonstrations from the standpoint of safety. Finally, to further improve the safety awareness, a regulator is introduced in the loss function of the discriminator training to prevent the recovered reward function from assigning high rewards to the risky behaviors. We tested our S-AIRL in the highway autonomous driving scenario. Comparing to the original AIRL algorithm, with the same level of imitation learning (IL) performance, the proposed S-AIRL can reduce the collision rate by 32.6%.


Sign in / Sign up

Export Citation Format

Share Document