scholarly journals The Level Weighted Structural Similarity Loss: A Step Away from MSE

Author(s):  
Yingjing Lu

The Mean Square Error (MSE) has shown its strength when applied in deep generative models such as Auto-Encoders to model reconstruction loss. However, in image domain especially, the limitation of MSE is obvious: it assumes pixel independence and ignores spatial relationships of samples. This contradicts most architectures of Auto-Encoders which use convolutional layers to extract spatial dependent features. We base on the structural similarity metric (SSIM) and propose a novel level weighted structural similarity (LWSSIM) loss for convolutional Auto-Encoders. Experiments on common datasets on various Auto-Encoder variants show that our loss is able to outperform the MSE loss and the Vanilla SSIM loss. We also provide reasons why our model is able to succeed in cases where the standard SSIM loss fails.

1978 ◽  
Vol 48 ◽  
pp. 227-228
Author(s):  
Y. Requième

In spite of important delays in the initial planning, the full automation of the Bordeaux meridian circle is progressing well and will be ready for regular observations by the middle of the next year. It is expected that the mean square error for one observation will be about ±0.”10 in the two coordinates for declinations up to 87°.


2018 ◽  
Vol 934 (4) ◽  
pp. 59-62
Author(s):  
V.I. Salnikov

The question of calculating the limiting values of residuals in geodesic constructions is considered in the case when the limiting value for measurement errors is assumed equal to 3m, ie ∆рred = 3m, where m is the mean square error of the measurement. Larger errors are rejected. At present, the limiting value for the residual is calculated by the formula 3m√n, where n is the number of measurements. The article draws attention to two contradictions between theory and practice arising from the use of this formula. First, the formula is derived from the classical law of the normal Gaussian distribution, and it is applied to the truncated law of the normal distribution. And, secondly, as shown in [1], when ∆рred = 2m, the sums of errors naturally take the value equal to ?pred, after which the number of errors in the sum starts anew. This article establishes its validity for ∆рred = 3m. A table of comparative values of the tolerances valid and recommended for more stringent ones is given. The article gives a graph of applied and recommended tolerances for ∆рred = 3m.


2020 ◽  
Vol 30 (1) ◽  
pp. 240-257
Author(s):  
Akula Suneetha ◽  
E. Srinivasa Reddy

Abstract In the data collection phase, the digital images are captured using sensors that often contaminated by noise (undesired random signal). In digital image processing task, enhancing the image quality and reducing the noise is a central process. Image denoising effectively preserves the image edges to a higher extend in the flat regions. Several adaptive filters (median filter, Gaussian filter, fuzzy filter, etc.) have been utilized to improve the smoothness of digital image, but these filters failed to preserve the image edges while removing noise. In this paper, a modified fuzzy set filter has been proposed to eliminate noise for restoring the digital image. Usually in fuzzy set filter, sixteen fuzzy rules are generated to find the noisy pixels in the digital image. In modified fuzzy set filter, a set of twenty-four fuzzy rules are generated with additional four pixel locations for determining the noisy pixels in the digital image. The additional eight fuzzy rules ease the process of finding the image pixels,whether it required averaging or not. In this scenario, the input digital images were collected from the underwater photography fish dataset. The efficiency of the modified fuzzy set filter was evaluated by varying degrees of Gaussian noise (0.01, 0.03, and 0.1 levels of Gaussian noise). For performance evaluation, Structural Similarity (SSIM), Mean Structural Similarity (MSSIM), Mean Square Error (MSE), Normalized Mean Square Error (NMSE), Universal Image Quality Index (UIQI), Peak Signal to Noise Ratio (PSNR), and Visual Information Fidelity (VIF) were used. The experimental results showed that the modified fuzzy set filter improved PSNR value up to 2-3 dB, MSSIM up to 0.12-0.03, and NMSE value up to 0.38-0.1 compared to the traditional filtering techniques.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1631
Author(s):  
Bruno Guilherme Martini ◽  
Gilson Augusto Helfer ◽  
Jorge Luis Victória Barbosa ◽  
Regina Célia Espinosa Modolo ◽  
Marcio Rosa da Silva ◽  
...  

The application of ubiquitous computing has increased in recent years, especially due to the development of technologies such as mobile computing, more accurate sensors, and specific protocols for the Internet of Things (IoT). One of the trends in this area of research is the use of context awareness. In agriculture, the context involves the environment, for example, the conditions found inside a greenhouse. Recently, a series of studies have proposed the use of sensors to monitor production and/or the use of cameras to obtain information about cultivation, providing data, reminders, and alerts to farmers. This article proposes a computational model for indoor agriculture called IndoorPlant. The model uses the analysis of context histories to provide intelligent generic services, such as predicting productivity, indicating problems that cultivation may suffer, and giving suggestions for improvements in greenhouse parameters. IndoorPlant was tested in three scenarios of the daily life of farmers with hydroponic production data that were obtained during seven months of cultivation of radicchio, lettuce, and arugula. Finally, the article presents the results obtained through intelligent services that use context histories. The scenarios used services to recommend improvements in cultivation, profiles and, finally, prediction of the cultivation time of radicchio, lettuce, and arugula using the partial least squares (PLS) regression technique. The prediction results were relevant since the following values were obtained: 0.96 (R2, coefficient of determination), 1.06 (RMSEC, square root of the mean square error of calibration), and 1.94 (RMSECV, square root of the mean square error of cross validation) for radicchio; 0.95 (R2), 1.37 (RMSEC), and 3.31 (RMSECV) for lettuce; 0.93 (R2), 1.10 (RMSEC), and 1.89 (RMSECV) for arugula. Eight farmers with different functions on the farm filled out a survey based on the technology acceptance model (TAM). The results showed 92% acceptance regarding utility and 98% acceptance for ease of use.


2011 ◽  
Vol 57 (7) ◽  
pp. 4622-4635 ◽  
Author(s):  
Bernhard G. Bodmann ◽  
Pankaj K. Singh

2021 ◽  
pp. 58-60
Author(s):  
Naziru Fadisanku Haruna ◽  
Ran Vijay Kumar Singh ◽  
Samsudeen Dahiru

In This paper a modied ratio-type estimator for nite population mean under stratied random sampling using single auxiliary variable has been proposed. The expression for mean square error and bias of the proposed estimator are derived up to the rst order of approximation. The expression for minimum mean square error of proposed estimator is also obtained. The mean square error the proposed estimator is compared with other existing estimators theoretically and condition are obtained under which proposed estimator performed better. A real life population data set has been considered to compare the efciency of the proposed estimator numerically.


2010 ◽  
Vol 40 (8) ◽  
pp. 1844-1847 ◽  
Author(s):  
Dimas Estrasulas de Oliveira ◽  
Luis Orlindo Tedeschi

Saturated aliphatic hydrocarbons (n-alkanes) were extracted from feed, orts, and bovine fecal samples using disposable, plastic 5mL-syringes as an alternative material to disposable columns, which are normally used in the liquid-solid extraction phase of n-alkanes. For both methods, the n-alkane extracts (carbon chain length between 31 and 36 atoms) were identified using gas chromatography. The linear regression between methods were: 1) feces: column Alkane=2.63+0.92×syringeAlkane [r²=0.94, square root of the mean square error (RMSE)=13.7mg kg-1, n=30] from which the intercept and the slope did not simultaneously differ from zero and unity (P>0.05), respectively; 2) feeds: column Alkane=0.36+1.12×syringeAlkane (r²=0.85, RMSE=1.9mg kg-1, n=21) from which the intercept and the slope did not simultaneously differ from zero and unity (P>0.05), respectively; 3) orts: column Alkane=0.49+0.92×syringeAlkane (r²=0.98, RMSE=1.2mg kg-1, n=15) from which the intercept and the slope did not simultaneously differ from zero and unity (P>0.05), respectively. Materials with low concentration of n-alkanes may affect the values obtained in both methods. These results suggested that disposable plastic syringes might be a viable alternative to columns thus, reducing analytical costs.


Sign in / Sign up

Export Citation Format

Share Document