scholarly journals Are Noisy Sentences Useless for Distant Supervised Relation Extraction?

2020 ◽  
Vol 34 (05) ◽  
pp. 8799-8806
Author(s):  
Yuming Shang ◽  
He-Yan Huang ◽  
Xian-Ling Mao ◽  
Xin Sun ◽  
Wei Wei

The noisy labeling problem has been one of the major obstacles for distant supervised relation extraction. Existing approaches usually consider that the noisy sentences are useless and will harm the model's performance. Therefore, they mainly alleviate this problem by reducing the influence of noisy sentences, such as applying bag-level selective attention or removing noisy sentences from sentence-bags. However, the underlying cause of the noisy labeling problem is not the lack of useful information, but the missing relation labels. Intuitively, if we can allocate credible labels for noisy sentences, they will be transformed into useful training data and benefit the model's performance. Thus, in this paper, we propose a novel method for distant supervised relation extraction, which employs unsupervised deep clustering to generate reliable labels for noisy sentences. Specifically, our model contains three modules: a sentence encoder, a noise detector and a label generator. The sentence encoder is used to obtain feature representations. The noise detector detects noisy sentences from sentence-bags, and the label generator produces high-confidence relation labels for noisy sentences. Extensive experimental results demonstrate that our model outperforms the state-of-the-art baselines on a popular benchmark dataset, and can indeed alleviate the noisy labeling problem.

2019 ◽  
Vol 7 ◽  
pp. 343-356 ◽  
Author(s):  
Rui Cai ◽  
Mirella Lapata

In this paper we focus on learning dependency aware representations for semantic role labeling without recourse to an external parser. The backbone of our model is an LSTM-based semantic role labeler jointly trained with two auxiliary tasks: predicting the dependency label of a word and whether there exists an arc linking it to the predicate. The auxiliary tasks provide syntactic information that is specific to semantic role labeling and are learned from training data (dependency annotations) without relying on existing dependency parsers, which can be noisy (e.g., on out-of-domain data or infrequent constructions). Experimental results on the CoNLL-2009 benchmark dataset show that our model outperforms the state of the art in English, and consistently improves performance in other languages, including Chinese, German, and Spanish.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qian Yi ◽  
Guixuan Zhang ◽  
Shuwu Zhang

Distant supervision is an effective method to automatically collect large-scale datasets for relation extraction (RE). Automatically constructed datasets usually comprise two types of noise: the intrasentence noise and the wrongly labeled noisy sentence. To address issues caused by the above two types of noise and improve distantly supervised relation extraction, this paper proposes a novel distantly supervised relation extraction model, which consists of an entity-based gated convolution sentence encoder and a multilevel sentence selective attention (Matt) module. Specifically, we first apply an entity-based gated convolution operation to force the sentence encoder to extract entity-pair-related features and filter out useless intrasentence noise information. Furthermore, the multilevel attention schema fuses the bag information to obtain a fine-grained bag-specific query vector, which can better identify valid sentences and reduce the influence of wrongly labeled sentences. Experimental results on a large-scale benchmark dataset show that our model can effectively reduce the influence of the above two types of noise and achieves state-of-the-art performance in relation extraction.


Author(s):  
Yujin Yuan ◽  
Liyuan Liu ◽  
Siliang Tang ◽  
Zhongfei Zhang ◽  
Yueting Zhuang ◽  
...  

Distant supervision leverages knowledge bases to automatically label instances, thus allowing us to train relation extractor without human annotations. However, the generated training data typically contain massive noise, and may result in poor performances with the vanilla supervised learning. In this paper, we propose to conduct multi-instance learning with a novel Cross-relation Cross-bag Selective Attention (C2SA), which leads to noise-robust training for distant supervised relation extractor. Specifically, we employ the sentence-level selective attention to reduce the effect of noisy or mismatched sentences, while the correlation among relations were captured to improve the quality of attention weights. Moreover, instead of treating all entity-pairs equally, we try to pay more attention to entity-pairs with a higher quality. Similarly, we adopt the selective attention mechanism to achieve this goal. Experiments with two types of relation extractor demonstrate the superiority of the proposed approach over the state-of-the-art, while further ablation studies verify our intuitions and demonstrate the effectiveness of our proposed two techniques.


2020 ◽  
Vol 34 (05) ◽  
pp. 9122-9129
Author(s):  
Hai Wan ◽  
Yufei Yang ◽  
Jianfeng Du ◽  
Yanan Liu ◽  
Kunxun Qi ◽  
...  

Aspect-based sentiment analysis (ABSA) aims to detect the targets (which are composed by continuous words), aspects and sentiment polarities in text. Published datasets from SemEval-2015 and SemEval-2016 reveal that a sentiment polarity depends on both the target and the aspect. However, most of the existing methods consider predicting sentiment polarities from either targets or aspects but not from both, thus they easily make wrong predictions on sentiment polarities. In particular, where the target is implicit, i.e., it does not appear in the given text, the methods predicting sentiment polarities from targets do not work. To tackle these limitations in ABSA, this paper proposes a novel method for target-aspect-sentiment joint detection. It relies on a pre-trained language model and can capture the dependence on both targets and aspects for sentiment prediction. Experimental results on the SemEval-2015 and SemEval-2016 restaurant datasets show that the proposed method achieves a high performance in detecting target-aspect-sentiment triples even for the implicit target cases; moreover, it even outperforms the state-of-the-art methods for those subtasks of target-aspect-sentiment detection that they are competent to.


2021 ◽  
Vol 54 (1) ◽  
pp. 1-39
Author(s):  
Zara Nasar ◽  
Syed Waqar Jaffry ◽  
Muhammad Kamran Malik

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.


2021 ◽  
Vol 11 (23) ◽  
pp. 11344
Author(s):  
Wei Ke ◽  
Ka-Hou Chan

Paragraph-based datasets are hard to analyze by a simple RNN, because a long sequence always contains lengthy problems of long-term dependencies. In this work, we propose a Multilayer Content-Adaptive Recurrent Unit (CARU) network for paragraph information extraction. In addition, we present a type of CNN-based model as an extractor to explore and capture useful features in the hidden state, which represent the content of the entire paragraph. In particular, we introduce the Chebyshev pooling to connect to the end of the CNN-based extractor instead of using the maximum pooling. This can project the features into a probability distribution so as to provide an interpretable evaluation for the final analysis. Experimental results demonstrate the superiority of the proposed approach, being compared to the state-of-the-art models.


2020 ◽  
Vol 34 (07) ◽  
pp. 11029-11036
Author(s):  
Jiabo Huang ◽  
Qi Dong ◽  
Shaogang Gong ◽  
Xiatian Zhu

Convolutional neural networks (CNNs) have achieved unprecedented success in a variety of computer vision tasks. However, they usually rely on supervised model learning with the need for massive labelled training data, limiting dramatically their usability and deployability in real-world scenarios without any labelling budget. In this work, we introduce a general-purpose unsupervised deep learning approach to deriving discriminative feature representations. It is based on self-discovering semantically consistent groups of unlabelled training samples with the same class concepts through a progressive affinity diffusion process. Extensive experiments on object image classification and clustering show the performance superiority of the proposed method over the state-of-the-art unsupervised learning models using six common image recognition benchmarks including MNIST, SVHN, STL10, CIFAR10, CIFAR100 and ImageNet.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jiaxi Ye ◽  
Ruilin Li ◽  
Bin Zhang

Directed fuzzing is a practical technique, which concentrates its testing energy on the process toward the target code areas, while costing little on other unconcerned components. It is a promising way to make better use of available resources, especially in testing large-scale programs. However, by observing the state-of-the-art-directed fuzzing engine (AFLGo), we argue that there are two universal limitations, the balance problem between the exploration and the exploitation and the blindness in mutation toward the target code areas. In this paper, we present a new prototype RDFuzz to address these two limitations. In RDFuzz, we first introduce the frequency-guided strategy in the exploration and improve its accuracy by adopting the branch-level instead of the path-level frequency. Then, we introduce the input-distance-based evaluation strategy in the exploitation stage and present an optimized mutation to distinguish and protect the distance sensitive input content. Moreover, an intertwined testing schedule is leveraged to perform the exploration and exploitation in turn. We test RDFuzz on 7 benchmarks, and the experimental results demonstrate that RDFuzz is skilled at driving the program toward the target code areas, and it is not easily stuck by the balance problem of the exploration and the exploitation.


2020 ◽  
Vol 10 (8) ◽  
pp. 2864 ◽  
Author(s):  
Muhammad Asad ◽  
Ahmed Moustafa ◽  
Takayuki Ito

Artificial Intelligence (AI) has been applied to solve various challenges of real-world problems in recent years. However, the emergence of new AI technologies has brought several problems, especially with regard to communication efficiency, security threats and privacy violations. Towards this end, Federated Learning (FL) has received widespread attention due to its ability to facilitate the collaborative training of local learning models without compromising the privacy of data. However, recent studies have shown that FL still consumes considerable amounts of communication resources. These communication resources are vital for updating the learning models. In addition, the privacy of data could still be compromised once sharing the parameters of the local learning models in order to update the global model. Towards this end, we propose a new approach, namely, Federated Optimisation (FedOpt) in order to promote communication efficiency and privacy preservation in FL. In order to implement FedOpt, we design a novel compression algorithm, namely, Sparse Compression Algorithm (SCA) for efficient communication, and then integrate the additively homomorphic encryption with differential privacy to prevent data from being leaked. Thus, the proposed FedOpt smoothly trade-offs communication efficiency and privacy preservation in order to adopt the learning task. The experimental results demonstrate that FedOpt outperforms the state-of-the-art FL approaches. In particular, we consider three different evaluation criteria; model accuracy, communication efficiency and computation overhead. Then, we compare the proposed FedOpt with the baseline configurations and the state-of-the-art approaches, i.e., Federated Averaging (FedAvg) and the paillier-encryption based privacy-preserving deep learning (PPDL) on all these three evaluation criteria. The experimental results show that FedOpt is able to converge within fewer training epochs and a smaller privacy budget.


Physics ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 49-66 ◽  
Author(s):  
Vyacheslav I. Yukalov

The article presents the state of the art and reviews the literature on the long-standing problem of the possibility for a sample to be at the same time solid and superfluid. Theoretical models, numerical simulations, and experimental results are discussed.


Sign in / Sign up

Export Citation Format

Share Document