scholarly journals Target-Aspect-Sentiment Joint Detection for Aspect-Based Sentiment Analysis

2020 ◽  
Vol 34 (05) ◽  
pp. 9122-9129
Author(s):  
Hai Wan ◽  
Yufei Yang ◽  
Jianfeng Du ◽  
Yanan Liu ◽  
Kunxun Qi ◽  
...  

Aspect-based sentiment analysis (ABSA) aims to detect the targets (which are composed by continuous words), aspects and sentiment polarities in text. Published datasets from SemEval-2015 and SemEval-2016 reveal that a sentiment polarity depends on both the target and the aspect. However, most of the existing methods consider predicting sentiment polarities from either targets or aspects but not from both, thus they easily make wrong predictions on sentiment polarities. In particular, where the target is implicit, i.e., it does not appear in the given text, the methods predicting sentiment polarities from targets do not work. To tackle these limitations in ABSA, this paper proposes a novel method for target-aspect-sentiment joint detection. It relies on a pre-trained language model and can capture the dependence on both targets and aspects for sentiment prediction. Experimental results on the SemEval-2015 and SemEval-2016 restaurant datasets show that the proposed method achieves a high performance in detecting target-aspect-sentiment triples even for the implicit target cases; moreover, it even outperforms the state-of-the-art methods for those subtasks of target-aspect-sentiment detection that they are competent to.

2021 ◽  
Vol 11 (23) ◽  
pp. 11344
Author(s):  
Wei Ke ◽  
Ka-Hou Chan

Paragraph-based datasets are hard to analyze by a simple RNN, because a long sequence always contains lengthy problems of long-term dependencies. In this work, we propose a Multilayer Content-Adaptive Recurrent Unit (CARU) network for paragraph information extraction. In addition, we present a type of CNN-based model as an extractor to explore and capture useful features in the hidden state, which represent the content of the entire paragraph. In particular, we introduce the Chebyshev pooling to connect to the end of the CNN-based extractor instead of using the maximum pooling. This can project the features into a probability distribution so as to provide an interpretable evaluation for the final analysis. Experimental results demonstrate the superiority of the proposed approach, being compared to the state-of-the-art models.


2020 ◽  
Vol 34 (05) ◽  
pp. 8799-8806
Author(s):  
Yuming Shang ◽  
He-Yan Huang ◽  
Xian-Ling Mao ◽  
Xin Sun ◽  
Wei Wei

The noisy labeling problem has been one of the major obstacles for distant supervised relation extraction. Existing approaches usually consider that the noisy sentences are useless and will harm the model's performance. Therefore, they mainly alleviate this problem by reducing the influence of noisy sentences, such as applying bag-level selective attention or removing noisy sentences from sentence-bags. However, the underlying cause of the noisy labeling problem is not the lack of useful information, but the missing relation labels. Intuitively, if we can allocate credible labels for noisy sentences, they will be transformed into useful training data and benefit the model's performance. Thus, in this paper, we propose a novel method for distant supervised relation extraction, which employs unsupervised deep clustering to generate reliable labels for noisy sentences. Specifically, our model contains three modules: a sentence encoder, a noise detector and a label generator. The sentence encoder is used to obtain feature representations. The noise detector detects noisy sentences from sentence-bags, and the label generator produces high-confidence relation labels for noisy sentences. Extensive experimental results demonstrate that our model outperforms the state-of-the-art baselines on a popular benchmark dataset, and can indeed alleviate the noisy labeling problem.


2020 ◽  
Vol 34 (05) ◽  
pp. 8649-8656
Author(s):  
Jipeng Qiang ◽  
Yun Li ◽  
Yi Zhu ◽  
Yunhao Yuan ◽  
Xindong Wu

Lexical simplification (LS) aims to replace complex words in a given sentence with their simpler alternatives of equivalent meaning. Recently unsupervised lexical simplification approaches only rely on the complex word itself regardless of the given sentence to generate candidate substitutions, which will inevitably produce a large number of spurious candidates. We present a simple LS approach that makes use of the Bidirectional Encoder Representations from Transformers (BERT) which can consider both the given sentence and the complex word during generating candidate substitutions for the complex word. Specifically, we mask the complex word of the original sentence for feeding into the BERT to predict the masked token. The predicted results will be used as candidate substitutions. Despite being entirely unsupervised, experimental results show that our approach obtains obvious improvement compared with these baselines leveraging linguistic databases and parallel corpus, outperforming the state-of-the-art by more than 12 Accuracy points on three well-known benchmarks.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mehdi Srifi ◽  
Ahmed Oussous ◽  
Ayoub Ait Lahcen ◽  
Salma Mouline

AbstractVarious recommender systems (RSs) have been developed over recent years, and many of them have concentrated on English content. Thus, the majority of RSs from the literature were compared on English content. However, the research investigations about RSs when using contents in other languages such as Arabic are minimal. The researchers still neglect the field of Arabic RSs. Therefore, we aim through this study to fill this research gap by leveraging the benefit of recent advances in the English RSs field. Our main goal is to investigate recent RSs in an Arabic context. For that, we firstly selected five state-of-the-art RSs devoted originally to English content, and then we empirically evaluated their performance on Arabic content. As a result of this work, we first build four publicly available large-scale Arabic datasets for recommendation purposes. Second, various text preprocessing techniques have been provided for preparing the constructed datasets. Third, our investigation derived well-argued conclusions about the usage of modern RSs in the Arabic context. The experimental results proved that these systems ensure high performance when applied to Arabic content.


1992 ◽  
Vol 36 (5) ◽  
pp. 821-828 ◽  
Author(s):  
K. H. Brown ◽  
D. A. Grose ◽  
R. C. Lange ◽  
T. H. Ning ◽  
P. A. Totta

2021 ◽  
Vol 14 (4) ◽  
pp. 1-28
Author(s):  
Tao Yang ◽  
Zhezhi He ◽  
Tengchuan Kou ◽  
Qingzheng Li ◽  
Qi Han ◽  
...  

Field-programmable Gate Array (FPGA) is a high-performance computing platform for Convolution Neural Networks (CNNs) inference. Winograd algorithm, weight pruning, and quantization are widely adopted to reduce the storage and arithmetic overhead of CNNs on FPGAs. Recent studies strive to prune the weights in the Winograd domain, however, resulting in irregular sparse patterns and leading to low parallelism and reduced utilization of resources. Besides, there are few works to discuss a suitable quantization scheme for Winograd. In this article, we propose a regular sparse pruning pattern in the Winograd-based CNN, namely, Sub-row-balanced Sparsity (SRBS) pattern, to overcome the challenge of the irregular sparse pattern. Then, we develop a two-step hardware co-optimization approach to improve the model accuracy using the SRBS pattern. Based on the pruned model, we implement a mixed precision quantization to further reduce the computational complexity of bit operations. Finally, we design an FPGA accelerator that takes both the advantage of the SRBS pattern to eliminate low-parallelism computation and the irregular memory accesses, as well as the mixed precision quantization to get a layer-wise bit width. Experimental results on VGG16/VGG-nagadomi with CIFAR-10 and ResNet-18/34/50 with ImageNet show up to 11.8×/8.67× and 8.17×/8.31×/10.6× speedup, 12.74×/9.19× and 8.75×/8.81×/11.1× energy efficiency improvement, respectively, compared with the state-of-the-art dense Winograd accelerator [20] with negligible loss of model accuracy. We also show that our design has 4.11× speedup compared with the state-of-the-art sparse Winograd accelerator [19] on VGG16.


Author(s):  
Markus Endres ◽  
Lena Rudenko

A skyline query retrieves all objects in a dataset that are not dominated by other objects according to some given criteria. There exist many skyline algorithms which can be classified into generic, index-based, and lattice-based algorithms. This chapter takes a tour through lattice-based skyline algorithms. It summarizes the basic concepts and properties, presents high-performance parallel approaches, shows how one overcomes the low-cardinality restriction of lattice structures, and finally presents an application on data streams for real-time skyline computation. Experimental results on synthetic and real datasets show that lattice-based algorithms outperform state-of-the-art skyline techniques, and additionally have a linear runtime complexity.


Author(s):  
Changdong Xu ◽  
Xin Geng

Hierarchical classification is a challenging problem where the class labels are organized in a predefined hierarchy. One primary challenge in hierarchical classification is the small training set issue of the local module. The local classifiers in the previous hierarchical classification approaches are prone to over-fitting, which becomes a major bottleneck of hierarchical classification. Fortunately, the labels in the local module are correlated, and the siblings of the true label can provide additional supervision information for the instance. This paper proposes a novel method to deal with the small training set issue. The key idea of the method is to represent the correlation among the labels by the label distribution. It generates a label distribution that contains the supervision information of each label for the given instance, and then learns a mapping from the instance to the label distribution. Experimental results on several hierarchical classification datasets show that our method significantly outperforms other state-of-theart hierarchical classification approaches.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jiaxi Ye ◽  
Ruilin Li ◽  
Bin Zhang

Directed fuzzing is a practical technique, which concentrates its testing energy on the process toward the target code areas, while costing little on other unconcerned components. It is a promising way to make better use of available resources, especially in testing large-scale programs. However, by observing the state-of-the-art-directed fuzzing engine (AFLGo), we argue that there are two universal limitations, the balance problem between the exploration and the exploitation and the blindness in mutation toward the target code areas. In this paper, we present a new prototype RDFuzz to address these two limitations. In RDFuzz, we first introduce the frequency-guided strategy in the exploration and improve its accuracy by adopting the branch-level instead of the path-level frequency. Then, we introduce the input-distance-based evaluation strategy in the exploitation stage and present an optimized mutation to distinguish and protect the distance sensitive input content. Moreover, an intertwined testing schedule is leveraged to perform the exploration and exploitation in turn. We test RDFuzz on 7 benchmarks, and the experimental results demonstrate that RDFuzz is skilled at driving the program toward the target code areas, and it is not easily stuck by the balance problem of the exploration and the exploitation.


2020 ◽  
Vol 10 (8) ◽  
pp. 2864 ◽  
Author(s):  
Muhammad Asad ◽  
Ahmed Moustafa ◽  
Takayuki Ito

Artificial Intelligence (AI) has been applied to solve various challenges of real-world problems in recent years. However, the emergence of new AI technologies has brought several problems, especially with regard to communication efficiency, security threats and privacy violations. Towards this end, Federated Learning (FL) has received widespread attention due to its ability to facilitate the collaborative training of local learning models without compromising the privacy of data. However, recent studies have shown that FL still consumes considerable amounts of communication resources. These communication resources are vital for updating the learning models. In addition, the privacy of data could still be compromised once sharing the parameters of the local learning models in order to update the global model. Towards this end, we propose a new approach, namely, Federated Optimisation (FedOpt) in order to promote communication efficiency and privacy preservation in FL. In order to implement FedOpt, we design a novel compression algorithm, namely, Sparse Compression Algorithm (SCA) for efficient communication, and then integrate the additively homomorphic encryption with differential privacy to prevent data from being leaked. Thus, the proposed FedOpt smoothly trade-offs communication efficiency and privacy preservation in order to adopt the learning task. The experimental results demonstrate that FedOpt outperforms the state-of-the-art FL approaches. In particular, we consider three different evaluation criteria; model accuracy, communication efficiency and computation overhead. Then, we compare the proposed FedOpt with the baseline configurations and the state-of-the-art approaches, i.e., Federated Averaging (FedAvg) and the paillier-encryption based privacy-preserving deep learning (PPDL) on all these three evaluation criteria. The experimental results show that FedOpt is able to converge within fewer training epochs and a smaller privacy budget.


Sign in / Sign up

Export Citation Format

Share Document