scholarly journals Semi-supervised Learning with Induced Word Senses for State of the Art Word Sense Disambiguation

2016 ◽  
Vol 55 ◽  
pp. 1025-1058 ◽  
Author(s):  
Osman Başkaya ◽  
David Jurgens

Word Sense Disambiguation (WSD) aims to determine the meaning of a word in context, and successful approaches are known to benefit many applications in Natural Language Processing. Although supervised learning has been shown to provide superior WSD performance, current sense-annotated corpora do not contain a sufficient number of instances per word type to train supervised systems for all words. While unsupervised techniques have been proposed to overcome this data sparsity problem, such techniques have not outperformed supervised methods. In this paper, we propose a new approach to building semi-supervised WSD systems that combines a small amount of sense-annotated data with information from Word Sense Induction, a fully-unsupervised technique that automatically learns the different senses of a word based on how it is used. In three experiments, we show how sense induction models may be effectively combined to ultimately produce high-performance semi-supervised WSD systems that exceed the performance of state-of-the-art supervised WSD techniques trained on the same sense-annotated data. We anticipate that our results and released software will also benefit evaluation practices for sense induction systems and those working in low-resource languages by demonstrating how to quickly produce accurate WSD systems with minimal annotation effort.

2020 ◽  
Vol 1 ◽  
pp. 1-18
Author(s):  
Amine Medad ◽  
Mauro Gaio ◽  
Ludovic Moncla ◽  
Sébastien Mustière ◽  
Yannick Le Nir

Abstract. Discourse may contain both named and nominal entities. Most common nouns or nominal mentions in natural language do not have a single, simple meaning but rather a number of related meanings. This form of ambiguity led to the development of a task in natural language processing known as Word Sense Disambiguation. Recognition and categorisation of named and nominal entities is an essential step for Word Sense Disambiguation methods. Up to now, named entity recognition and categorisation systems mainly focused on the annotation, categorisation and identification of named entities. This paper focuses on the annotation and the identification of spatial nominal entities. We explore the combination of Transfer Learning principle and supervised learning algorithms, in order to build a system to detect spatial nominal entities. For this purpose, different supervised learning algorithms are evaluated with three different context sizes on two manually annotated datasets built from Wikipedia articles and hiking description texts. The studied algorithms have been selected for one or more of their specific properties potentially useful in solving our problem. The results of the first phase of experiments reveal that the selected algorithms have similar performances in terms of ability to detect spatial nominal entities. The study also confirms the importance of the size of the window to describe the context, when word-embedding principle is used to represent the semantics of each word.


2013 ◽  
Vol 21 (2) ◽  
pp. 251-269 ◽  
Author(s):  
MASOUD NAROUEI ◽  
MANSOUR AHMADI ◽  
ASHKAN SAMI

AbstractAn open problem in natural language processing is word sense disambiguation (WSD). A word may have several meanings, but WSD is the task of selecting the correct sense of a polysemous word based on its context. Proposed solutions are based on supervised and unsupervised learning methods. The majority of researchers in the area focused on choosing proper size of ‘n’ in n-gram that is used for WSD problem. In this research, the concept has been taken to a new level by using variable ‘n’ and variable size window. The concept is based on the iterative patterns extracted from the text. We show that this type of sequential pattern is more effective than many other solutions for WSD. Using regular data mining algorithms on the extracted features, we significantly outperformed most monolingual WSD solutions. The state-of-the-art results were obtained using external knowledge like various translations of the same sentence. Our method improved the accuracy of the multilingual system more than 4 percent, although we were using monolingual features.


2015 ◽  
Author(s):  
Rodrigo Goulart ◽  
Juliano De Carvalho ◽  
Vera De Lima

Word Sense Disambiguation (WSD) is an important task for Biomedicine text-mining. Supervised WSD methods have the best results but they are complex and their cost for testing is too high. This work presents an experiment on WSD using graph-based approaches (unsupervised methods). Three algorithms were tested and compared to the state of the art. Results indicate that similar performance could be reached with different levels of complexity, what may point to a new approach to this problem.


Author(s):  
Pushpak Bhattacharyya ◽  
Mitesh Khapra

This chapter discusses the basic concepts of Word Sense Disambiguation (WSD) and the approaches to solving this problem. Both general purpose WSD and domain specific WSD are presented. The first part of the discussion focuses on existing approaches for WSD, including knowledge-based, supervised, semi-supervised, unsupervised, hybrid, and bilingual approaches. The accuracy value for general purpose WSD as the current state of affairs seems to be pegged at around 65%. This has motivated investigations into domain specific WSD, which is the current trend in the field. In the latter part of the chapter, we present a greedy neural network inspired algorithm for domain specific WSD and compare its performance with other state-of-the-art algorithms for WSD. Our experiments suggest that for domain-specific WSD, simply selecting the most frequent sense of a word does as well as any state-of-the-art algorithm.


Author(s):  
Abdelhamid Bouchachia

Recently the field of machine learning, pattern recognition, and data mining has witnessed a new research stream that is <i>learning with partial supervisio</i>n -LPS- (known also as <i>semi-supervised learning</i>). This learning scheme is motivated by the fact that the process of acquiring the labeling information of data could be quite costly and sometimes prone to mislabeling. The general spectrum of learning from data is envisioned in Figure 1. As shown, in many situations, the data is neither perfectly nor completely labeled.<div><br></div><div>LPS aims at using available labeled samples in order to guide the process of building classification and clustering machineries and help boost their accuracy. Basically, LPS is a combination of two learning paradigms: supervised and unsupervised where the former deals exclusively with labeled data and the latter is concerned with unlabeled data. Hence, the following questions:</div><div><br></div><div><ul><li>Can we improve supervised learning with unlabeled data?&nbsp;<br></li><li>Can we guide unsupervised learning by incorporating few labeled samples?<br></li></ul></div><div><br></div><div>Typical LPS applications are medical diagnosis (Bouchachia &amp; Pedrycz, 2006a), facial expression recognition (Cohen et al., 2004), text classification (Nigam et al., 2000), protein classification (Weston et al., 2003), and several natural language processing applications such as word sense disambiguation (Niu et al., 2005), and text chunking (Ando &amp; Zhangz, 2005).</div><div><br></div><div>Because LPS is still a young but active research field, it lacks a survey outlining the existing approaches and research trends. In this chapter, we will take a step towards an overview. We will discuss (i) the background of LPS, (iii) the main focus of our LPS research and explain the underlying assumptions behind LPS, and (iv) future directions and challenges of LPS research. </div>


2019 ◽  
Vol 26 (5) ◽  
pp. 438-446 ◽  
Author(s):  
Ahmad Pesaranghader ◽  
Stan Matwin ◽  
Marina Sokolova ◽  
Ali Pesaranghader

Abstract Objective In biomedicine, there is a wealth of information hidden in unstructured narratives such as research articles and clinical reports. To exploit these data properly, a word sense disambiguation (WSD) algorithm prevents downstream difficulties in the natural language processing applications pipeline. Supervised WSD algorithms largely outperform un- or semisupervised and knowledge-based methods; however, they train 1 separate classifier for each ambiguous term, necessitating a large number of expert-labeled training data, an unattainable goal in medical informatics. To alleviate this need, a single model that shares statistical strength across all instances and scales well with the vocabulary size is desirable. Materials and Methods Built on recent advances in deep learning, our deepBioWSD model leverages 1 single bidirectional long short-term memory network that makes sense prediction for any ambiguous term. In the model, first, the Unified Medical Language System sense embeddings will be computed using their text definitions; and then, after initializing the network with these embeddings, it will be trained on all (available) training data collectively. This method also considers a novel technique for automatic collection of training data from PubMed to (pre)train the network in an unsupervised manner. Results We use the MSH WSD dataset to compare WSD algorithms, with macro and micro accuracies employed as evaluation metrics. deepBioWSD outperforms existing models in biomedical text WSD by achieving the state-of-the-art performance of 96.82% for macro accuracy. Conclusions Apart from the disambiguation improvement and unsupervised training, deepBioWSD depends on considerably less number of expert-labeled data as it learns the target and the context terms jointly. These merit deepBioWSD to be conveniently deployable in real-time biomedical applications.


2017 ◽  
Vol 43 (3) ◽  
pp. 593-617 ◽  
Author(s):  
Sascha Rothe ◽  
Hinrich Schütze

We present AutoExtend, a system that combines word embeddings with semantic resources by learning embeddings for non-word objects like synsets and entities and learning word embeddings that incorporate the semantic information from the resource. The method is based on encoding and decoding the word embeddings and is flexible in that it can take any word embeddings as input and does not need an additional training corpus. The obtained embeddings live in the same vector space as the input word embeddings. A sparse tensor formalization guarantees efficiency and parallelizability. We use WordNet, GermaNet, and Freebase as semantic resources. AutoExtend achieves state-of-the-art performance on Word-in-Context Similarity and Word Sense Disambiguation tasks.


Sign in / Sign up

Export Citation Format

Share Document