Imazamox for Winter Annual Grass Control in Imidazolinone-Tolerant Winter Wheat

2004 ◽  
Vol 18 (4) ◽  
pp. 924-930 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman ◽  
Anthony D. White ◽  
Stephen D. Miller ◽  
Craig M. Alford ◽  
...  

Field experiments were conducted at five locations in Kansas, Nebraska, and Wyoming to determine the effects of imazamox rate and application timing on winter annual grass control and crop response in imidazolinone-tolerant winter wheat. Imazamox at 35, 44, or 53 g ai/ha applied early-fall postemergence (EFP), late-fall postemergence, early-spring postemergence (ESP), or late-spring postemergence (LSP) controlled jointed goatgrass at least 95% in all experiments. Feral rye control with imazamox was 95 to 99%, regardless of rate or application timing at Hays, KS, in 2001. Feral rye control at Sidney, NE, and Torrington, WY, was highest (78 to 85%) with imazamox at 44 or 53 g/ha. At Sidney and Torrington, feral rye control was greatest when imazamox was applied EFP. Imazamox stunted wheat <10% in two experiments at Torrington, but EFP or LSP herbicide treatments in the Sidney experiment and ESP or LSP treatments in two Hays experiments caused moderate (12 to 34%) wheat injury. Wheat injury increased as imazamox rate increased. Wheat receiving imazamox LSP yielded less grain than wheat treated at other application timings in each Hays experiment and at Sidney in 2001. No yield differences occurred in one Torrington experiment. However, yields generally decreased as imazamox application timing was delayed in the other Torrington experiment. Generally, imazamox applied in the fall provided the greatest weed control, caused the least wheat injury, and maximized wheat yield.

2019 ◽  
Vol 34 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Neeta Soni ◽  
Scott J. Nissen ◽  
Philip Westra ◽  
Jason K. Norsworthy ◽  
Michael J. Walsh ◽  
...  

AbstractDowny brome, feral rye, and jointed goatgrass are problematic winter annual grasses in central Great Plains winter wheat production. Integrated control strategies are needed to manage winter annual grasses and reduce selection pressure exerted on these weed populations by the limited herbicide options currently available. Harvest weed-seed control (HWSC) methods aim to remove or destroy weed seeds, thereby reducing seed-bank enrichment at crop harvest. An added advantage is the potential to reduce herbicide-resistant weed seeds that are more likely to be present at harvest, thereby providing a nonchemical resistance-management strategy. Our objective was to assess the potential for HWSC of winter annual grass weeds in winter wheat by measuring seed retention at harvest and destruction percentage in an impact mill. During 2015 and 2016, 40 wheat fields in eastern Colorado were sampled. Seed retention was quantified and compared per weed species by counting seed retained above the harvested fraction of the wheat upper canopy (15 cm and above), seed retained below 15 cm, and shattered seed on the soil surface at wheat harvest. A stand-mounted impact mill device was used to determine the percent seed destruction of grass weed species in processed wheat chaff. Averaged across both years, seed retention (±SE) was 75% ± 2.9%, 90% ± 1.7%, and 76% ± 4.3% for downy brome, feral rye, and jointed goatgrass, respectively. Seed retention was most variable for downy brome, because 59% of the samples had at least 75% seed retention, whereas the proportions for feral rye and jointed goatgrass samples with at least 75% seed retention were 93% and 70%, respectively. Weed seed destruction percentages were at least 98% for all three species. These results suggest HWSC could be implemented as an integrated strategy for winter annual grass management in central Great Plains winter wheat cropping systems.


2005 ◽  
Vol 19 (3) ◽  
pp. 599-607 ◽  
Author(s):  
John C. Frihauf ◽  
Stephen D. Miller ◽  
Craig M. Alford

Irrigated field experiments were conducted near Torrington, WY, during the 2001 to 2002 (year 1) and 2002 to 2003 (year 2) winter wheat growing seasons to evaluate cultivar response to different imazamox rates, adjuvants, and application timings. Five cultivars were treated postemergence in the early fall (EF), late fall (LF), or early spring (ES) with imazamox at 54 or 108 g ai/ha, including either nonionic surfactant (NIS) at 0.25% or methylated seed oil (MSO) at 1% (v/v) as adjuvants. A 28% urea ammonium nitrate solution at 1% (v/v) was included with all treatments. Spring injury was more severe in year 1 than year 2. Severe spring injury on ‘AP502 CL’, ‘Above’, ‘IMI-Fidel’, ‘IMI-Jagger’, and ‘IMI-Madsen’ was linked to fall application of 108 g/ha imazamox with MSO. Imazamox applied at 108 g/ha plus MSO applied in the fall consistently injured all cultivars more than the same rate with NIS and 54 g/ha imazamox regardless of adjuvant and timing, although severity of injury in the experiments differed between EF and LF timings in years 1 and 2, respectively. Correlation analysis supports injury reduced reproductive tillers per meter of row and wheat yields and increased the number of seeds per spike in year 1. The reduction of reproductive tillers per meter of row in year 1 was likely the result of severe injury caused by 108 g/ha imazamox applied in the EF coupled with little snow cover to protect against cold winter temperatures. Wheat yield in year 1 was reduced by 108 g/ha imazamox applied in the early fall; however, imazamox applied at 54 g/ha with either adjuvant in EF, LF, or ES were safe. Yield parameters and wheat yields in year 2 were not affected by imazamox rate, adjuvant, timing, or interactions of these factors.


1999 ◽  
Vol 13 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Oleg Daugovish ◽  
Drew J. Lyon ◽  
David D. Baltensperger

Field studies were conducted from 1990 through 1997 to evaluate the long-term effect of 2- and 3-yr rotations on the control of downy brome, jointed goatgrass, and feral rye in winter wheat. At the completion of the study, jointed goatgrass and feral rye densities averaged 8 plants/m2and < 0.1 plant/m2for the 2- and 3-yr rotations, respectively. Downy brome densities averaged < 0.5 plant/m2for both the 2- and 3-yr rotations, with no treatment differences observed. Winter annual grasses were not eradicated after two cycles of the 3-yr rotations, but weed densities were reduced 10-fold compared to densities after one cycle and more than 100-fold compared with the 2-yr rotations. Wheat grain contamination with dockage and foreign material followed a similar trend. The 3-yr rotations were economically competitive with 2-yr rotations and provided superior control of the winter annual grass weeds.


1997 ◽  
Vol 11 (1) ◽  
pp. 30-34
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper

Seven field experiments were conducted in Oklahoma to compare efficacy and wheat response to currently registered cheat suppression or control herbicide treatments. Chlorsulfuron + metsulfuron premix (5:1 w/w) at 26 g ai/ha applied PRE controlled cheat 20 to 61%, increased wheat grain yields at two of seven locations, and decreased dockage due to cheat at five of seven locations. Chlorsulfuron + metsulfuron at 21 g/ha tank-mixed with metribuzin at 210 g/ha, applied early fall POST, controlled cheat 36 to 98% and increased wheat yield at four of seven locations. Metribuzin applied POST in the fall at 420 g/ha controlled cheat 56 to 98% and increased wheat yields at five of seven locations. Both POST treatments decreased dockage at all locations.


1998 ◽  
Vol 12 (3) ◽  
pp. 478-483 ◽  
Author(s):  
R. L. Anderson

Producers rely on cultural practices to manage downy brome, jointed goatgrass, and feral rye in winter wheat because there are no effective herbicides for in-crop control. This study characterized seedling emergence, growth, and development of these winter annual grasses, with the goal of suggesting or improving cultural control strategies. Feral rye seedlings emerged within 4 wk, whereas downy brome and jointed goatgrass seedlings emerged over a 10-wk period. Emergence patterns of these grasses suggest that delay of winter wheat planting may be effective in reducing feral rye densities, but this strategy most likely will be ineffective with downy brome or jointed goatgrass. Downy brome began anthesis 1 to 2 wk earlier than the other two grasses and winter wheat. Both downy brome and jointed goatgrass were shorter than winter wheat during the growing season, whereas feral rye was at least as tall as wheat. Producers mow infested wheat to prevent weed seed production, but this practice may not be effective with jointed goatgrass and downy brome because of their short stature and downy brome's earlier development. Conversely, mowing has potential in preventing feral rye seed production. The grasses produced between 340 and 770 seeds/ plant.


1996 ◽  
Vol 10 (4) ◽  
pp. 870-875 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman

Greenhouse studies determined the dose-responses of cheat, downy brome, Japanese brome, jointed goatgrass, and winter wheat to preplant-incorporated MON 37500 and its residual effects on kochia. Concentrations of MON 37500 up to 60 ppbw did not affect winter wheat. MON 37500 did not prevent weed emergence, but increasingly inhibited weed growth as the dose was increased up to about 20 ppbw. GR50values were 16, 16, 11, and 31 ppbw for cheat, downy brome, Japanese brome, and jointed goatgrass, respectively. Japanese brome was more susceptible than cheat or downy brome, and jointed goatgrass tolerated two to three times more MON 37500 than theBromusspecies. Plant dry weights of kochia seeded after removal of the winter annual grasses decreased with increasing initial MON 37500 concentrations up to 20 ppbw. Kochia density was influenced by which winter annual grass was grown previously.


Weed Science ◽  
1999 ◽  
Vol 47 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Alex G. Ogg ◽  
Steven S. Seefeldt

Our objective was to identify traits in winter wheat important to competitiveness against jointed goatgrass, measured as increased wheat yields and reduced jointed goatgrass seed production. Jointed goatgrass is an important winter annual grass weed that cannot be controlled selectively in winter wheat. Seven cultivars of soft white winter wheat were grown with and without competition from jointed goatgrass over two growing seasons. Measurements of numerous traits of winter wheat and jointed goatgrass were recorded throughout each growing season. The data were analyzed using path analysis with latent variables to determine which traits most enhanced competitiveness. In a drier year, increased rate of height development was important in maintaining wheat yields when wheat was growing in competition with jointed goatgrass. Increased rate of height development also was an important trait in reducing jointed goatgrass seed production. In a wet year compared to a dry year, the number of wheat heads per plant, the rate of water use, and weight gain were positively correlated to maintaining winter wheat yields. Jointed goatgrass seed production in the wet year was reduced overall compared to the dry year, but from the cultivars tested, there were no traits identified that were critical in enhancing this loss of seed production. This study suggests that cultivars with greater height development rates will be more competitive when growing in fields infested with jointed goatgrass.


2004 ◽  
Vol 18 (4) ◽  
pp. 1043-1048 ◽  
Author(s):  
Robert N. Stougaard ◽  
Carol A. Mallory-Smith ◽  
James A. Mickelson

Field experiments were conducted at Kalispell, MT, and Corvallis, OR, to determine the optimum rate and application timing of imazamox for downy brome control in winter wheat. Crop injury occurred as a reduction in plant height and was minimal at Kalispell, never exceeding 10%. Crop injury at Corvallis was more severe and was dependant on application timing. No injury was observed with spring applications, but fall applications resulted in as much as 33% injury at the highest rate of imazamox. Fall applications generally provided more consistent control of downy brome, as evidenced by the lower dosage required to reduce downy brome dry weight by 50% (lowerI50values). Nonetheless, spring applications generally provided control comparable with that of fall applications when imazamox was applied at the highest rate. The one exception was at Corvallis during 1997 to 1998, where spring applications failed to provide adequate control of downy brome even at the highest rate applied. Although imazamox generally provided excellent control of downy brome, wheat yield response to downy brome interference was negligible, declining by less than 10% in the absence of imazamox. The absence of a yield response to downy brome interference was attributed to the lack of competition for soil moisture from downy brome under the high-rainfall conditions of the experiment.


Weed Science ◽  
1993 ◽  
Vol 41 (4) ◽  
pp. 551-556 ◽  
Author(s):  
Robert E. Blackshaw

Field experiments over 3 yr at Lethbridge, Alberta, determined the effect of various downy brome densities and times of its emergence on winter wheat biomass and seed yield. Downy brome reduced wheat biomass up to 59% and seed yield up to 68%. Time of downy brome emergence relative to wheat affected the magnitude of these yield reductions more than the density of downy brome. At comparable densities, downy brome caused 2- to 5-fold greater reductions in yield when it emerged within 3 wk after winter wheat than when it emerged 6 wk after wheat or in early spring. Late-emerging downy brome caused significant wheat yield or biomass losses only at densities of 200 to 400 plants m-2. Late-emerging downy brome plants were strongly shaded (70 to 90%) by winter wheat throughout much of the growing season.


2010 ◽  
Vol 24 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Vince M. Davis ◽  
Greg R. Kruger ◽  
Bryan G. Young ◽  
William G. Johnson

Horseweed (Conyza canadensis) is a common weed in no-till crop production systems. It is problematic because of the frequent occurrence of biotypes resistant to glyphosate and acetolactate synthase (ALS)-inhibiting herbicides and its ability to complete its life cycle as a winter or summer annual weed. Tactics to control horseweed while controlling other winter annual weeds routinely fail; herbicide application timing and spring emergence patterns of horseweed may be responsible. The objectives of this experiment were to (1) determine the influence of fall and spring herbicides with and without soil residual horseweed activity on spring-emerging glyphosate-resistant (GR) horseweed density and (2) evaluate the efficacy and persistence of saflufenacil on GR horseweed. Field studies were conducted in southern Indiana and Illinois from fall 2006 to summer 2007 and repeated in 2007 to 2008. Six preplant herbicide treatments were applied at four application timings: early fall, late fall, early spring, and late spring. Horseweed plants were counted every 2 wk following the first spring application until the first week of July. Horseweed almost exclusively emerged in the spring at both locations. Spring horseweed emergence was higher when 2,4-D + glyphosate was fall-applied and controlled other winter annual weeds. With fall-applied 2,4-D + glyphosate, over 90% of the peak horseweed density was observed before April 25. In contrast, only 25% of the peak horseweed density was observed in the untreated check by April 25. Starting from the initiation of horseweed emergence in late March, chlorimuron + tribenuron applied early fall or early spring, and spring-applied saflufenacil at 100 g ai/ha provided greater than 90% horseweed control for 12 wk. Early spring–applied saflufenacil at 50 g ai/ha provided 8 wk of greater than 90% residual control, and early spring–applied simazine provided 6 wk of greater than 90% control. When applied in late spring, saflufenacil was the only herbicide treatment that reduced horseweed densities by greater than 90% compared to 2,4-D + glyphosate. We concluded from this research that fall applications of nonresidual herbicides can increase the rate and density of spring emerging horseweed. In addition, spring-applied saflufenacil provides no-till producers with a new preplant herbicide for foliar and residual control of glyphosate- and ALS-resistant horseweed.


Sign in / Sign up

Export Citation Format

Share Document