Cool-Season Turfgrass Reseeding Intervals for Methiozolin

2012 ◽  
Vol 26 (4) ◽  
pp. 789-792 ◽  
Author(s):  
Patrick E. McCullough ◽  
Diego Gómez De Barreda

Methiozolin selectively controls annual bluegrass in cool-season turfgrasses, and practitioners may wish to reseed desirable species in treated areas. Field experiments were conducted to evaluate reseeding intervals for creeping bentgrass, perennial ryegrass, and tall fescue following methiozolin applications. Turfgrass establishment varied for species, application timing (0, 2, 4, or 6 wk before seeding, WBS), and rates tested (0.56, 1.12, or 2.24 kg ai ha−1). Reductions in turf cover suggest that seeding of creeping bentgrass, perennial ryegrass, and tall fescue should be delayed 2 wk after methiozolin treatments at 0.56 kg ha−1. However, reseeding should be delayed after methiozolin treatments at 1.12 kg ha−1for approximately 4, 4, and 2 wk for creeping bentgrass, perennial ryegrass, and tall fescue, respectively. Similarly, establishment was reduced on all dates from the nontreated after 2.24 kg ha−1was applied at 4 WBS, suggesting that reseeding should be delayed for at least 6 wk on all three species at the high rate.

HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1552-1555 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Previous research has demonstrated that bispyribac-sodium can selectively control established annual bluegrass (Poa annua L.) in creeping bentgrass (Agrostis stolonifera L.). Annual bluegrass is also a problematic weed in other cool-season turfgrass species. However, the relative tolerance of other cool-season turfgrass species to bispyribac is not known. Field experiments were conducted at Adelphia, N.J., in 2002 and 2003 to gain understanding of the phytotoxic effects that bispyribac may have on kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea (L.) Schreb.), and chewings fine fescue (Festuca rubra L. subsp. commutata Gaud.). Single applications of bispyribac at 37 to 296 g·ha–1 were applied to mature stands of each species on 11 June, 2002 and 10 June, 2003. Visual injury was evaluated and clippings were collected 35 and 70 days after treatment (DAT). Visual injury at 35 DAT increased as bispyribac rate increased. Kentucky bluegrass was least tolerant to bispyribac with up to 28% injury when applied at 296 g·ha–1. Injury on other species did not exceed 20%. Initial injury on perennial ryegrass, tall fescue, and chewings fine fescue was primarily in the form of chlorosis, while kentucky bluegrass exhibited more severe stunting and thinning symptoms. Bispyribac at rates from 74 to 296 g·ha–1 reduced kentucky bluegrass clipping weights by 19% to 35%, respectively, as compared to the untreated control at 35 DAT in 2002. Initial visual injury on perennial ryegrass, tall fescue, and chewings fine fescue dissipated to ≤5% by 70 DAT. However, recovery of kentucky bluegrass was less complete. These studies suggest that bispyribac-sodium has potential to severely injure kentucky bluegrass. Injury on perennial ryegrass, tall fescue, and chewings fine fescue appears to be less severe and persistent; therefore, bispyribac can be used for weed control in these species. Chemical names used: 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoic acid (bispyribac-sodium).


2016 ◽  
Vol 30 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Joseph C. Wolfe ◽  
Joseph C. Neal ◽  
Christopher D. Harlow ◽  
Travis W. Gannon

Recent trends favoring organic and sustainable turfgrass management practices have led to an increased desire for biologically based alternatives to traditional synthetic herbicides. Thaxtomin A, produced by the bacteriumStreptomyces scabies, has been reported to have PRE efficacy on broadleaf weeds, but efficacy of thaxtomin A on annual grassy weeds and safety to newly seeded cool-season turfgrasses have not been reported. Field experiments were conducted to evaluate PRE efficacy of thaxtomin A on smooth crabgrass and annual bluegrass. Monthly applications of thaxtomin A from April to July controlled smooth crabgrass through July but did not provide season-long control equivalent to an industry standard PRE herbicide. An initial application of thaxtomin A at 380 g ai ha−1followed by two applications at 190 or 380 g ha−1at 4-wk intervals provided season-long annual bluegrass control similar to an industry standard PRE herbicide. At 380 g ha−1, thaxtomin A reduced tall fescue and perennial ryegrass cover when applied 1 wk before seeding, at seeding, or 1 wk after seeding but was safe at other application timings. Up to three applications of thaxtomin A at 380 g ha−1at 4-wk intervals did not reduce perennial ryegrass cover. Applications to creeping bentgrass resulted in unacceptable turfgrass injury. These results suggest that thaxtomin A can suppress annual grassy weeds in tall fescue or perennial ryegrass turf when applied at least 2 wk before or after seeding. Furthermore, repeated applications of thaxtomin A can provide effective PRE control of annual bluegrass during overseeded perennial ryegrass establishment.


HortScience ◽  
2013 ◽  
Vol 48 (10) ◽  
pp. 1313-1316 ◽  
Author(s):  
Diego Gómez de Barreda ◽  
Jialin Yu ◽  
Patrick E. McCullough

Grassy weeds may reduce cool-season turfgrass establishment after seeding and herbicide use is often warranted. Field experiments were conducted to evaluate the tolerance of creeping bentgrass (Agrostis stolonifera L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) to fenoxaprop and metamifop applications at 1, 2, 3, or 4 weeks after seeding (WAS). Creeping bentgrass groundcover was reduced from 34% to 71% at 8 WAS from the nontreated by fenoxaprop at 50 g a.i./ha and metamifop at 400 and 800 g a.i./ha at all application timings. Metamifop at 200 g·ha−1 reduced creeping bentgrass cover 10% to 18% from the nontreated at 8 WAS when applied 1, 2, or 3 WAS, but treatments at 4 WAS did not reduce cover. Perennial ryegrass treated with fenoxaprop and metamifop at 800 g·ha−1 at 1 WAS had cover reduced from the nontreated on two and one dates, respectively, whereas tall fescue cover was never reduced greater than 5% from the nontreated. Results suggest applications to creeping bentgrass should be delayed greater than 4 WAS for fenoxaprop at 50 g·ha−1, greater than 4 WAS for metamifop at 400 and 800 g·ha−1, and 3 WAS for metamifop at 200 g·ha−1. Additionally, fenoxaprop applications should be delayed 2 WAS for perennial ryegrass and tall fescue, whereas metamifop could be safely applied at all rates at 1 WAS.


2010 ◽  
Vol 24 (4) ◽  
pp. 461-470 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart ◽  
Dan Weisenberger ◽  
Zachary J. Reicher

Amicarbazone has potential for selective annual bluegrass control in cool-season turfgrasses, but seasonal application timings may influence efficacy. To test this hypothesis, field experiments in New Jersey and Indiana investigated amicarbazone efficacy from fall or spring applications and growth chamber experiments investigated the influence of temperature on efficacy. Fall treatments were more injurious to creeping bentgrass and Kentucky bluegrass than spring applications, but fall applications were also more efficacious for annual bluegrass control. In growth chamber experiments, injury and clipping weight reductions were exacerbated by increased temperatures from 10 to 30 C on annual bluegrass, creeping bentgrass, Kentucky bluegrass, and perennial ryegrass. Results suggest that amicarbazone use for annual bluegrass control in cool-season turf may be limited to spring applications, but increased temperature enhances activity on all grasses.


HortScience ◽  
2011 ◽  
Vol 46 (4) ◽  
pp. 648-650 ◽  
Author(s):  
Patrick E. McCullough ◽  
James T. Brosnan ◽  
Gregory K. Breeden

Turf managers applying amicarbazone for annual bluegrass (Poa annua L.) control in cool-season turfgrasses may wish to reseed into treated areas. Field experiments were conducted in Georgia and Tennessee to investigate perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) reseeding intervals after amicarbazone applications. Perennial ryegrass and tall fescue cover were reduced similarly (less than 10% from the untreated) by all herbicides applied 2, 4, or 6 weeks before seeding. Bispyribac-sodium at 0.1 kg a.i./ha reduced tall fescue and perennial ryegrass cover more than amicarbazone at 0.1 or 0.2 kg a.i./ha when applied the day of seeding. Applied on the day of seeding in Georgia, amicarbazone at 0.4 kg·ha−1 reduced turf cover of each species similar to bispyribac-sodium; however, this response was not observed in Tennessee. Results suggest tall fescue and perennial ryegrass can be safely seeded the day of amicarbazone applications at 0.1 or 0.2 kg·ha−1, but practitioners may need to wait 2 weeks before seeding these turfgrasses into areas treated with amicarbazone at 0.4 kg·ha−1 or bispyribac-sodium at 0.1 kg a.i./ha.


Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Jialin Yu ◽  
Patrick E. McCullough ◽  
William K. Vencill

Amicarbazone controls annual bluegrass in cool-season turfgrasses but physiological effects that influence selectivity have received limited investigation. The objective of this research was to evaluate uptake, translocation, and metabolism of amicarbazone in these species. Annual bluegrass, creeping bentgrass, and tall fescue required < 3, 56, and 35 h to reach 50% foliar absorption, respectively. At 72 h after treatment (HAT), annual bluegrass and creeping bentgrass translocated 73 and 70% of root-absorbed14C to shoots, respectively, while tall fescue only distributed 55%. Annual bluegrass recovered ≈ 50% more root-absorbed14C in shoots than creeping bentgrass and tall fescue. Creeping bentgrass and tall fescue metabolism of amicarbazone was ≈ 2-fold greater than annual bluegrass from 1 to 7 d after treatment (DAT). Results suggest greater absorption, more distribution, and less metabolism of amicarbazone in annual bluegrass, compared to creeping bentgrass and tall fescue, could be attributed to selectivity of POST applications.


2004 ◽  
Vol 18 (4) ◽  
pp. 977-981 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Field experiments were conducted at Adelphia, NJ, in 2001 and 2002 to evaluate the response of Kentucky bluegrass, perennial ryegrass, tall fescue, and Chewings fine fescue to sulfosulfuron. Single applications of sulfosulfuron at 6 to 67 g ai/ha were applied to mature swards of each species. Visual chlorosis ratings were taken and clippings were collected 4 wk after treatment (WAT), and turf injury was rated 8 WAT. Chlorosis on all species increased with increasing sulfosulfuron rate. In 2001, Kentucky bluegrass, perennial ryegrass, tall fescue, and fine fescue chlorosis reached 33, 43, 65, and 61% at 4 WAT, respectively, whereas in 2002, chlorosis only reached 13, 26, 46, and 26%, respectively. Clipping weights of all species decreased as application rate increased. Reductions in Kentucky bluegrass and perennial ryegrass clipping weights were less severe than those in tall and fine fescue. By 8 WAT, Kentucky bluegrass, perennial ryegrass, and fine fescue had nearly complete recovery from any initial visual injury symptoms. However, tall fescue injury was still evident 8 WAT in both years. Initial injury of Kentucky bluegrass, perennial ryegrass, and Chewings fine fescue was in the form of discoloration and stunting. Significant stand thinning was only evident in the tall fescue studies. These studies suggest that Kentucky bluegrass and perennial ryegrass may be more tolerant than tall fescue to applications of sulfosulfuron and fine fescue is intermediately tolerant to sulfosulfuron.


2009 ◽  
Vol 23 (4) ◽  
pp. 519-523 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart

Spray adjuvants may enhance bispyribac–sodium efficacy for annual bluegrass control but chelated iron may be needed to reduce potential turf discoloration. Field and laboratory experiments were conducted to investigate the influence of iron and adjuvants on bispyribac–sodium efficacy for annual bluegrass control in cool-season turf. In laboratory experiments,14C–bispyribac–sodium foliar absorption increased in four grasses by approximately 50 and 100% when applied with a nonionic surfactant and methylated seed oil, respectively, compared to the herbicide alone. Chelated iron did not reduce14C–bispyribac–sodium absorption. In field experiments, spray adjuvants enhanced annual bluegrass control from bispyribac–sodium at 37 g ai/ha but not at 74 g ai/ha. Iron did not reduce annual bluegrass control from bispyribac–sodium, with or without adjuvants, but mitigated creeping bentgrass discoloration for all treatments.


1993 ◽  
Vol 7 (1) ◽  
pp. 169-173 ◽  
Author(s):  
B. Jack Johnson ◽  
Sarah H. Bundschuh

An experiment was conducted to determine the interval needed between dithiopyr formulation (EC and G) treatments and seeding of tall fescue, perennial ryegrass, and creeping bentgrass. The cover of tall fescue 10 wk after seeding was not reduced when the EC formulation was applied at ≤ 0.84 kg ha−1 ≥ 2 wk before seeding. Dithiopyr G at 0.56 kg ha−1 did not reduce tall fescue cover when applied at ≥ 8 wk before seeding; whereas, 0.84 kg ha−1 required a 12-wk interval between treatment and seeding in one of two years. Perennial ryegrass cover 10 wk after seeding was not reduced with dithiopyr at 0.56 kg ha−1 applied from 2 to 12 wk before seeding. When the dithiopyr G was applied at 0.56 kg ha−1, an 8-wk interval before seeding was needed to prevent a reduction in turf cover. When rates of EC and G dithiopyr were increased to 0.84 kg ha−1 an 8-wk interval was needed for the EC and a 12-wk interval was needed for the G formulation to prevent a reduction in cover in one of two years. Creeping bentgrass cover was not reduced when dithiopyr EC was applied at 0.56 kg ha−1 ≥ 8 wk before seeding. When the EC rate was increased to 0.84 kg ha−1 a 12-wk interval was needed between treatment and seeding in one of two years. When dithiopyr G was applied within 12 wk of seeding creeping bentgrass, the cover was reduced to an unacceptable level regardless of application rate.


Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Patrick E. McCullough ◽  
Diego Gómez de Barreda ◽  
Jialin Yu

Methiozolin controls annual bluegrass in creeping bentgrass but application timing and temperature could influence efficacy in turf. In field experiments, sequential methiozolin applications totaling 3.36 kg ai ha−1provided excellent (> 90%) annual bluegrass control at 8 wk after initial treatment when treatments were initiated in February/March or May but programs totaling 0.84 and 1.68 kg ha−1provided poor control (< 70%) at both timings. Methiozolin at all rates caused minimal turf injury (< 8%) but creeping bentgrass was only injured from February/March applications. In growth chamber experiments, creeping bentgrass injury from methiozolin at 10 C was 2 and 4 times greater than at 20 C and 30 C, respectively, while annual bluegrass injury was similar across temperatures. In laboratory experiments, annual bluegrass had more foliar absorption of14C-methiozolin than creeping bentgrass at 30/25 C (day/night), compared to 15/10 C, but translocation was similar at both temperatures as > 90% of absorbed14C remained in the treated leaf after 72 h. Annual bluegrass distributed and recovered more radioactivity to shoots from root-applied14C-methiozolin than creeping bentgrass while both species had about 2 times more distribution to shoots at 30/25 C than 15/10 C. Metabolites were not detected in annual bluegrass or creeping bentgrass at 1, 3, or 7 d after treatment when grown at 15/10 C or 30/25 C suggesting uptake and translocation contributes to methiozolin selectivity in turfgrass.


Sign in / Sign up

Export Citation Format

Share Document