stand thinning
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Peter C. Jentsch ◽  
Chris T. Bauch ◽  
Madhur Anand

AbstractBark beetle outbreaks and forest fires have imposed severe ecological damage and caused billions of dollars in lost resources in recent decades. The impact of such combined disturbances is projected to become more severe, especially as climate change takes its toll on forest ecosystems in the coming years. Here, we investigate the impact of multiple disturbances in a demographically heterogeneous tree population, using an age-structured difference equation model of bark beetle outbreaks and forest fires. We identify two dynamical regimes for beetle and fire dynamics. The model predicts that fire helps dampen beetle outbreaks not only by removing host trees but also by altering the demographic structure of forest stands. We show that a stand thinning protocol, which reduces the population size of the largest few juvenile classes by a small percentage, is able to significantly reduce beetle-induced tree mortality. Our research demonstrates one approach to capturing compound disturbances in a mathematical model.


2020 ◽  
Vol 50 (9) ◽  
pp. 862-871 ◽  
Author(s):  
Thomas E. Kolb ◽  
Kelsey Flathers ◽  
John B. Bradford ◽  
Caitlin Andrews ◽  
Lance A. Asherin ◽  
...  

Trees in dry forests often regenerate in episodic pulses when wet periods coincide with ample seed production. Factors leading to success or failure of regeneration pulses are poorly understood. We investigated the impacts of stand thinning on survival and growth of the 2013 cohort of ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) seedlings in northern Arizona, United States. We measured seedling survival and growth over the first five growing seasons after germination in six stand basal areas (BAs; 0, 7, 14, 23, 34, and 66 (unthinned) m2·ha−1) produced by long-term experimental thinnings. Five-year survival averaged 2.5% and varied among BAs. Mean survival duration was longer in intermediate BAs (11 to 16 months) than in clearings and high BAs (5 months). The BAs of 7, 14, and 23 m2·ha−1 had >2600 5-year-old seedlings·ha−1. In contrast, regeneration was lower in the clearing (666 seedlings·ha−1) and failed completely in the 34 m2·ha−1 and unthinned treatments. Seedling survival was highest during wet years and lowest during drought years. Many surviving seedlings had no net height growth between years 4 and 5 because of stem browsing. Results indicate that natural regeneration of ponderosa pine is influenced by stand BA, drought, herbivory, and interactions between extreme climatic events.


2020 ◽  
Vol 145 ◽  
pp. 105701 ◽  
Author(s):  
Edward R. Schenk ◽  
Frances O'Donnell ◽  
Abraham E. Springer ◽  
Lawrence E. Stevens

2019 ◽  
Vol 93 (3) ◽  
pp. 444-457
Author(s):  
P Corey Green ◽  
Harold E Burkhart ◽  
John W Coulston ◽  
Philip J Radtke

Abstract Loblolly pine (Pinus taeda L.) is one of the most widely planted tree species globally. As the reliability of estimating forest characteristics such as volume, biomass and carbon becomes more important, the necessary resources available for assessment are often insufficient to meet desired confidence levels. Small area estimation (SAE) methods were investigated for their potential to improve the precision of volume estimates in loblolly pine plantations aged 9–43. Area-level SAE models that included lidar height percentiles and stand thinning status as auxiliary information were developed to test whether precision gains could be achieved. Models that utilized both forms of auxiliary data provided larger gains in precision compared to using lidar alone. Unit-level SAE models were found to offer additional gains compared with area-level models in some cases; however, area-level models that incorporated both lidar and thinning status performed nearly as well or better. Despite their potential gains in precision, unit-level models are more difficult to apply in practice due to the need for highly accurate, spatially defined sample units and the inability to incorporate certain area-level covariates. The results of this study are of interest to those looking to reduce the uncertainty of stand parameter estimates. With improved estimate precision, managers, stakeholders and policy makers can have more confidence in resource assessments for informed decisions.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 645 ◽  
Author(s):  
Leena Stenberg ◽  
Kersti Haahti ◽  
Hannu Hökkä ◽  
Samuli Launiainen ◽  
Mika Nieminen ◽  
...  

A prerequisite for sustainable peatland forestry is sufficiently low water table (WT) level for profitable tree production. This requires better understanding on controls and feedbacks between tree stand and its evapotranspiration, drainage network condition, climate, and WT levels. This study explores the role of spatial tree stand distribution in the spatiotemporal distribution of WT levels and site water balance. A numerical experiment was conducted by a three-dimensional (3-D) hydrological model (FLUSH) applied to a 0.5 ha peatland forest assuming (1) spatially uniform interception and transpiration, (2) interception and transpiration scaled with spatial distributions of tree crown and root biomass, and (3) the combination of spatially scaled interception and uniform transpiration. Site water balance and WT levels were simulated for two meteorologically contrasting years. Spatial variations in transpiration were found to control WT levels even in a forest with relatively low stand stem volume (<100 m3/ha). Forest management scenarios demonstrated how stand thinning and reduced drainage efficiency raised WT levels and increased the area and duration of excessively wet conditions having potentially negative economic (reduced tree growth) and environmental (e.g., methane emissions, phosphorus mobilization) consequences. In practice, silvicultural treatment manipulating spatial stand structure should be optimized to avoid emergence of wet spots.


2017 ◽  
Vol 47 (8) ◽  
pp. 1123-1130 ◽  
Author(s):  
Pontus M.F. Lindgren ◽  
Thomas P. Sullivan ◽  
Douglas B. Ransome ◽  
Druscilla S. Sullivan ◽  
Lisa Zabek

Integration of trees with forage and livestock production as silvopastoralism is another potential component of intensive forest management. Stand thinning and fertilization may enhance growth of crop trees and understory forage for livestock. We tested the hypothesis that large-scale precommercial thinning (PCT) (particularly heavy thinning to ≤1000 stems·ha−1) and repeated fertilization, up to 20 years after the onset of treatments, would enhance production of graminoids, forbs, and shrubs as cattle (Bos taurus L.) forage. Results are from two long-term studies: (1) PCT (1988–2013) and (2) PCT with fertilization (PCT–FERT) (1993–2013) of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) stands in south-central British Columbia, Canada. Mean biomass estimates of graminoids, forbs, total herbs, and shrubs were not affected by stand density. However, fertilization enhanced mean biomass estimates of graminoids, forbs, and total herbs, but not shrubs. Thus, the density part of our hypothesis was not supported, but the nutrient addition part was supported at least for the herbaceous components. Biomass of the herbaceous understory was maintained as a silvopasture component for up to 20 years (stand age 13 to 33 years) in fertilized heavily thinned stands prior to canopy closure.


2017 ◽  
Vol 47 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Kathryn B. Piatek ◽  
Mary Ann Fajvan ◽  
Richard M. Turcotte

Stand thinning is being tested as a means to limit the impacts of the invasive hemlock woolly adelgid (HWA; Adelges tsugae Annand) on eastern hemlock (Tsuga canadensis (L.) Carriere). The efficacy of this strategy may be reduced if thinning increases hemlock foliar nutrients because HWA densities are correlated with foliar concentrations of N, P, K, Ca, and Mn. We determined foliar N, P, K, Ca, and Mn concentrations in 1-year-old and all other (older) needles prior to and for 4 years after thinning in northwestern Pennsylvania stands of eastern hemlock without HWA. Average foliar concentrations in 1-year-old needles were 1.30–1.80 g N·100 g−1, 1300–1700 mg P·kg−1, 4200–6300 mg K·kg−1, 2500–5200 mg Ca·kg−1, and 2393 μg Mn·g−1. N, P, and K decreased, Ca increased, and Mn first increased and then stabilized. Thinning by itself did not affect the tested foliar nutrients. The interaction between treatment and year was significant and evident in temporal trajectories of foliar N and K. However, the differences between thinned and unthinned plots within years averaged only 0.03 g N·100 g−1 and 340 mg K·kg−1. We concluded that even though thinning changed the temporal trajectories of foliar N and K, the nutritional shifts were minimal, brief, and unlikely to affect the efficacy of thinning in limiting the impacts of HWA.


EDIS ◽  
2013 ◽  
Vol 2013 (8) ◽  
Author(s):  
Chris Demers ◽  
Michael Andreu ◽  
Babe McGowan ◽  
Alan Long ◽  
Jarek Nowak

Thinning is an important silvicultural practice that redistributes the growth potential of the site to the best trees. Diameter growth rates are maintained or increased on residual trees after thinning, which increases the return on investment from higher-value trees. Biologically, thinning accelerates stand development by favoring the tallest, best-formed trees over those that are diseased, overtopped, crooked, forked, or otherwise undesirable and likely to die on their own if left in the stand long enough. In addition, thinning provides periodic income, improves access for equipment, recreation and hunting, and creates a generally healthier stand. Thinning is also beneficial for wildlife, especially when combined with prescribed fire or herbicide use to control competing vegetation. By allowing more light to reach the forest floor, thinning promotes growth of plants important as food and/or cover for wildlife species. Landowners are encouraged to consult with or hire a professional forester to assist with thinning and other forest management activities. This 6-page fact sheet was written by Chris Demers, Michael Andreu, Babe McGowan, Alan Long, and Jarek Nowak, and published by the UF Department of School of Forest Resources and Conservation, July 2013. http://edis.ifas.ufl.edu/fr159


Sign in / Sign up

Export Citation Format

Share Document