NUMERICAL ANALYSIS OF THE FLUID-DYNAMIC BEHAVIOR OF A SUBMERGED PLATE WAVE ENERGY CONVERTER

Author(s):  
F. M. Seibt ◽  
E. C. Couto ◽  
Paulo R. de F. Teixeira ◽  
E. D. dos Santos ◽  
Luiz Alberto O. Rocha ◽  
...  
2018 ◽  
Vol 10 (03) ◽  
pp. 1850024 ◽  
Author(s):  
Nicola Pozzi ◽  
Mauro Bonfanti ◽  
Giuliana Mattiazzo

Friction is a complicated phenomenon that plays a central role in a wide variety of physical systems. An accurate modeling of the friction forces is required in the model-based design approach, especially when the efficiency optimization and system controllability are the core of the design. In this work, a gyroscopic unit is considered as case study: the flywheel rotation is affected by different friction sources that needs to be compensated by the flywheel motor. An accurate modeling of the dissipations can be useful for the system efficiency optimization. According to the inertial sea wave energy converter (ISWEC) gyroscope layout, friction forces are modeled and their dependency with respect to the various physical quantities involved is examined. The mathematical model of friction forces is validated against the experimental data acquired during the laboratory testing of the ISWEC gyroscope. Moreover, in the wave energy field, it is common to work with scale prototypes during the full-scale device development. For this reason, the scale effect on dissipations has been correlated based on the Froude scaling law, which is commonly used for wave energy converter scaling. Moreover, a mixed Froude–Reynolds scaling law is taken into account, in order to maintain the scale of the fluid-dynamic losses due to flywheel rotation. The analytical study is accompanied by a series of simulations based on the properties of the ISWEC full-scale gyroscope.


2015 ◽  
pp. 437-443
Author(s):  
Harry Bingham ◽  
Robert Read ◽  
Frederik Jakobsen ◽  
Morten Simonsen ◽  
Pablo Guillen ◽  
...  

Author(s):  
Andrei Santos ◽  
Filipe Branco Teixeira ◽  
Liércio Isoldi ◽  
jeferson Avila Souza ◽  
Mateus das Neves Gomes ◽  
...  

2011 ◽  
Vol 25 (4) ◽  
pp. 28-35 ◽  
Author(s):  
Bo-Woo Nam ◽  
Sa-Young Hong ◽  
Ki-Bum Kim ◽  
Ji-Yong Park ◽  
Seung-Ho Shin

Author(s):  
Ken Rhinefrank ◽  
Al Schacher ◽  
Joe Prudell ◽  
Erik Hammagren ◽  
Zhe Zhang ◽  
...  

This paper presents a novel 1:7 scale point absorber wave energy converter (WEC), developed by Columbia Power Technologies (COLUMBIA POWER). Four hydrodynamic modeling tools were employed in the scaled development and the optimization process of the WEC, including WAMIT, Garrad Hassan’s GH WaveFarmer, OrcaFlex and ANSYS AQWA. The numerical analysis development is discussed, and the performance and mooring estimates at 1:7 scale and full scale are evaluated and optimized. The paper includes the development of the 1:7 scale physical model and the associated WEC field testing in Puget Sound, WA.


Author(s):  
Ken Rhinefrank ◽  
Al Schacher ◽  
Joe Prudell ◽  
Joao Cruz ◽  
Chad Stillinger ◽  
...  

This paper presents a novel point absorber wave energy converter (WEC), developed by Columbia Power Technologies (COLUMBIA POWER), in addition to the related numerical analysis and scaled wave tank testing. Three hydrodynamic modeling tools are employed to evaluate the performance of the WEC, including WAMIT, GL Garrad Hassan's GH WaveDyn, and OrcaFlex. GH WaveDyn is a specialized numerical code being developed specifically for the wave energy industry. Performance and mooring estimates at full scale are evaluated and optimized, followed by the development of a 1:33 scale physical model. The physical tests of the 1:33 scale model WEC were conducted at the multidirectional wave basin of Oregon State University's O.H. Hinsdale Wave Research Laboratory, in conjunction with the Northwest National Marine Renewable Energy Center (NNMREC). This paper concludes with an overview of the next steps for the modeling program and future experimental test plans.


Sign in / Sign up

Export Citation Format

Share Document