EXPERIMENTAL INVESTIGATION OF A REHEATING TWO-STAGE ADSORPTION CHILLER APPLYING FIXED CHILLED WATER OUTLET CONDITIONS

2015 ◽  
Vol 46 (3) ◽  
pp. 293-309
Author(s):  
I Gusti Agung Bagus Wirajati ◽  
Atsushi Akisawa ◽  
Yuki Ueda ◽  
Takahiko Miyazaki
Author(s):  
M. Fatouh

This paper reports the results of an experimental investigation on a pilot compression chiller (4 kW cooling capacity) working with R401a and R134a as R12 alternatives. Experiments are conducted on a single-stage vapor compression refrigeration system using water as a secondary working fluid through both evaporator and condenser. Influences of cooling water mass flow rate (170–1900 kg/h), cooling water inlet temperature (27–43°C) and chilled water mass flow rate (240–1150 kg/h) on performance characteristics of chillers are evaluated for R401a, R134a and R12. Increasing cooling water mass flow rate or decreasing its inlet temperature causes the operating pressures and electric input power to reduce while the cooling capacity and coefficient of performance (COP) to increase. Pressure ratio is inversely proportional while actual loads and COP are directly proportional to chilled water mass flow rate. The effect of cooling water inlet temperature, on the system performance, is more significant than the effects of cooling and chilled water mass flow rates. Comparison between R12, R134a and R401a under identical operating conditions revealed that R401a can be used as a drop-in refrigerant to replace R12 in water-cooled chillers.


2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988478
Author(s):  
M Gado ◽  
E Elgendy ◽  
Khairy Elsayed ◽  
M Fatouh

This article aims to improve the system cooling capacity of an adsorption chiller working with a silica gel/water pair by an allocation of the optimum cycle time at different operating conditions. A mathematical model was established and validated with the literature experimental data to predict the optimum cycle time for a wide range of hot (55°C–95°C), cooling (25°C–40°C), and chilled (10°C–22°C) water inlet temperatures. The optimum and conventional chiller performances are compared at different operating conditions. Enhancement ratio of the system cooling capacity was tripled as the cooling water inlet temperature increased from 25°C to 40°C at constant hot and chilled water inlet temperatures of 85°C and 14°C, respectively. Applying the concept of the optimum cycle time allocation, the system cooling capacity enhancement ratio can reach 15.6% at hot, cooling, and chilled water inlet temperatures of 95°C, 40°C, and 10°C, respectively.


2014 ◽  
Vol 61 ◽  
pp. 1996-1999 ◽  
Author(s):  
Z.H. He ◽  
H.Y. Huang ◽  
L.S. Deng ◽  
H.R. Yuan ◽  
N. Kobayashi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document