High-Turbulent Gas Screen in a Supersonic Nozzle

2000 ◽  
Vol 31 (6-8) ◽  
pp. 419-427
Author(s):  
V. P. Lebedev ◽  
V. V. Lemanov ◽  
Viktor I. Terekhov
Keyword(s):  
1997 ◽  
Vol 28 (7-8) ◽  
pp. 536-542
Author(s):  
A. A. Khalatov ◽  
I. S. Varganov

1977 ◽  
Vol 11 (1) ◽  
pp. 95-100
Author(s):  
V. A. Vinogradov ◽  
M. D. Petrov

2014 ◽  
Vol 590 ◽  
pp. 546-550
Author(s):  
Zhi Qiang Fan ◽  
Hai Bo Yang ◽  
Fei Zhao ◽  
Rong Zhu ◽  
Dong Bai Sun

The practical requirements of the project the nozzle entrance temperature is high, the gas specific heat ratio varies greatly, so it must consider the specific heat ratio change impact on two-dimensional nozzle contour design. Divided into consideration specific heat ratio change and not consider two kinds of scheme design of 1.4Ma nozzle profile and build the model using the arc line method, numerical simulation is carried out through the CFD software Fluent, analysis of two kinds of design scheme comparison. The results show that, in the supersonic nozzle at low Maher numbers, two schemes of nozzle design profile similarity, parameters change little flow tube, export the Maher number and the flow quality can meet the design requirements, proof of specific heat ratio has little effect on the design results in the design of the nozzle under the condition of low Maher number.


1974 ◽  
Vol 20 (4) ◽  
pp. 434-438
Author(s):  
E. M. Golubev ◽  
N. N. Ogurtsova ◽  
I. V. Podmoshenskii ◽  
P. N. Rogovtsev

2022 ◽  
Author(s):  
Manoj Prabakar Sargunaraj ◽  
Andres Torres ◽  
Jose Garduna ◽  
Marcel Otto ◽  
Jayanta S. Kapat ◽  
...  

2014 ◽  
Vol 742 ◽  
pp. 466-494 ◽  
Author(s):  
Somnath Ghosh ◽  
Rainer Friedrich

AbstractDirect numerical simulation (DNS), based on high-order numerical schemes, is used to study the effects of distributed pressure gradients on the redistribution of fluctuating kinetic energy in supersonic nozzle and diffuser flow with incoming fully developed turbulent pipe flow. Axisymmetric geometries and flow parameters have been selected such that shock waves are avoided and streamline curvature remains unimportant. Although mean extra rates of strain are quite small, strong changes in Reynolds stresses and their production/redistribution mechanisms are observed, in agreement with findings of Bradshaw (J. Fluid Mech., vol. 63, 1974, pp. 449–464). The central role of pressure–strain correlations in changing the Reynolds stress anisotropy is highlighted. A Green’s function-based analysis of pressure–strain correlations is presented, showing remarkable agreement with DNS data.


Sign in / Sign up

Export Citation Format

Share Document