Thermal Conductivity of Composite Materials Having a Chaotic Structure

2004 ◽  
Vol 35 (7-8) ◽  
pp. 507-515
Author(s):  
V. V. Novikov ◽  
A. N. Piven' ◽  
L. N. Udovenko
2021 ◽  
Vol 1889 (4) ◽  
pp. 042005
Author(s):  
A F Brodnikov ◽  
A V Bragin ◽  
N A Vichareva ◽  
F P Kazantsev ◽  
V I Kondratyev

2021 ◽  
Vol 42 (7) ◽  
Author(s):  
Xiaojian Wang ◽  
Xiaohu Niu ◽  
Wensheng Kang ◽  
Xiaoxue Wang ◽  
Liangbi Wang

2014 ◽  
Vol 36 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Dariusz Łydżba ◽  
Adrian Różański ◽  
Magdalena Rajczakowska ◽  
Damian Stefaniuk

Abstract The needle probe test, as a thermal conductivity measurement method, has become very popular in recent years. In the present study, the efficiency of this methodology, for the case of composite materials, is investigated based on the numerical simulations. The material under study is a two-phase composite with periodic microstructure of “matrix-inclusion” type. Two-scale analysis, incorporating micromechanics approach, is performed. First, the effective thermal conductivity of the composite considered is found by the solution of the appropriate boundary value problem stated for the single unit cell. Next, numerical simulations of the needle probe test are carried out. In this case, two different locations of the measuring sensor are considered. It is shown that the “equivalent” conductivity, derived from the probe test, is strongly affected by the location of the sensor. Moreover, comparing the results obtained for different scales, one can notice that the “equivalent” conductivity cannot be interpreted as the effective one for the composites considered. Hence, a crude approximation of the effective property is proposed based on the volume fractions of constituents and the equivalent conductivities derived from different sensor locations.


RSC Advances ◽  
2017 ◽  
Vol 7 (38) ◽  
pp. 23355-23362 ◽  
Author(s):  
Tao Huang ◽  
Xiaoliang Zeng ◽  
Yimin Yao ◽  
Rong Sun ◽  
Fanling Meng ◽  
...  

In recent decades, significant attention has been focused on developing composite materials with high thermal conductivity utilizing h-BN, which has outstanding thermal conductivity.


2014 ◽  
Vol 918 ◽  
pp. 21-26
Author(s):  
Chen Kang Huang ◽  
Yun Ching Leong

In this study, the transport theorem of phonons and electrons is utilized to create a model to predict the thermal conductivity of composite materials. By observing or assuming the dopant displacement in the matrix, a physical model between dopant and matrix can be built, and the composite material can be divided into several regions. In each region, the phonon or electron scattering caused by boundaries, impurities, or U-processes was taken into account to calculate the thermal conductivity. The model is then used to predict the composite thermal conductivity for several composite materials. It shows a pretty good agreement with previous studies in literatures. Based on the model, some discussions about dopant size and volume fraction are also made.


2021 ◽  
Author(s):  
Xiao-jian Wang ◽  
Liang-Bi Wang

Abstract The most common non-granular fillers are sheet and fiber. When they are distributed along the heat flux direction, the thermal conductivity of composite increases greatly. Meanwhile, the filler contact also has large effect on the thermal conductivity. However, the effect of filler contact on the thermal conductivity of composite with directional fillers has not been investigated. In this paper, the combined effects of filler contact, content and orientation are investigated. The results show that the effect of filler orientation on the thermal conductivity is greater than filler contact in low filler content, and exact opposite in high filler content. The effect of filler contact on fibrous and sheet fillers is far greater than cube and sphere fillers. This rule is affected by the filler contact. The filler content of 8% is the ideal percolation threshold of composite with fibrous and sheet filler. It is lower than cube filler and previous reports. The space for thermal conductivity growth of composite with directional filler is still very large. The effect of interfacial thermal resistance should be considered in predicting the thermal conductivity of composite under high Rc (>10-4).


2018 ◽  
Vol 1 (1) ◽  
pp. 834-842
Author(s):  
Murat Koru ◽  
Kenan Büyükkaya

The physical properties of the materials used are also important in the thermal conduction, besides many other factors. In this study, nettle fiber/polyester composites were formed using stinging nettle grown in the Black Sea region. The stinging nettle fibers used in the formation of these composites were divided into three parts as bottom, middle, and top. The physical properties (diameter, density, crystallinity) of the fibers obtained from different parts of the plant and how the increased fiber concentration affected the thermal conductivity coefficients of the composite materials formed were studied. As a result, it was observed that the thermal conductivity coefficients of the composites increased with the increase of the crystallinity ratio of the fiber. Moreover, the increased fiber concentration significantly increased the thermal conductivity coefficient of the composite materials produced.


Author(s):  
Mazhar Hussain ◽  
Daniel Levacher ◽  
Nathalie Leblanc ◽  
Hafida Zmamou ◽  
Irini Djeran Maigre ◽  
...  

Crude bricks are composite materials manufactured with sediments and natural fibers. Natural fibers are waste materials and used in construction materials for reinforcement. Their reuse in manufacturing reinforced crude bricks is eco-friendly and improves mechanical and thermal characteristics of crude bricks. Factors such as type of fibers, percentage of fibers, length of fibers and distribution of fibers inside the bricks have significant effect on mechanical, physical and thermal properties of biobased composite materials. It can be observed by tests such as indirect tensile strength, compressive strength for mechanical characteristics, density, shrinkage, color for physical properties, thermal conductivity and resistivity for thermal properties, and inundation test for durability of crude bricks. In this study, mechanical and physical characteristics of crude bricks reinforced with palm oil fibers are investigated and effect of change in percentage and length of fibers is observed. Crude bricks of size 4*4*16 cm3 are manufactured with dredged sediments from Usumacinta River, Mexico and reinforced with palm oil fibers at laboratory scale. For this purpose, sediments and palm oil fibers characteristics were studied. Length of fibers used is 2cm and 3cm. Bricks manufacturing steps such as sediments fibers mixing, moulding, compaction and drying are elaborated. Dynamic compaction is opted for compaction of crude bricks due to energy control. Indirect tensile strength and compressive strength tests are conducted to identify the mechanical characteristics of crude bricks. Physical properties of bricks are studied through density and shrinkage. Durability of crude bricks is observed with inundation test. Thermal properties are studied with thermal conductivity and resistivity test. Distribution and orientation of fibers and fibers counting are done to observe the homogeneity of fibers inside the crude bricks. Finally, comparison between the mechanical characteristics of crude bricks manufactured with 2cm and 3cm length with control specimen was made.


Sign in / Sign up

Export Citation Format

Share Document