Large-Eddy Simulations of Heat Transfer Within a Multi-Perforation Synthetic Jets Configuration

Author(s):  
Soizic Esnault ◽  
Florent Duchaine ◽  
Laurent Gicquel

Abstract Synthetic jets are produced by devices that enable a suction phase followed by an ejection phase. The resulting mean mass budget is hence null and no addition of mass in the system is required. These particular jets have especially been considered for some years for flow control applications. They also display features that can become of interest to enhance heat exchanges, for example for wall cooling issues. Synthetic jets can be generated through different mechanisms, such as acoustics by making use of a Helmholtz resonator or through the motion of a piston as in an experience mounted at Institut Pprime in France. The objective of this specific experiment is to understand how synthetic jets can enhance heat transfer in a multi-perforated configuration. As a complement to this experimental set up, Large-Eddy Simulations are produced and analysed in the present document to investigate the flow behavior as well as the impact of the synthetic jets on wall heat transfer. The experimental system considered here consists in a perforated heated plate, each perforation being above a cavity where a piston is used to control the synthetic jets. Placed in a wind tunnel test section, the device can be studied with a grazing flow and multiple operating points are available. The one considered here implies a grazing flow velocity of 12.8 m.s−1, corresponding to a Mach number around 0.04, and a piston displacement of 22 mm peak-to-peak at a frequency of 12.8 Hz. These two latter parameters lead to a jet Reynolds number of about 830. A good agreement is found between numerical results and experimental data. The simulations are then used to provide a detailed understanding of the flow. Two main behaviours are found, depending on the considered mid-period. During the ejection phase, the flow transitions to turbulence and the formation of characteristic structures is observed; the plate is efficiently cooled. During the suction phase the main flow is stabilised; the heat enhancement is particularly efficient in the hole wakes but not between them, leading to a heterogeneous temperature field.

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Soizic Esnault ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Stéphane Moreau

Abstract Synthetic jets are produced by devices that enable a suction phase followed by an ejection phase. The resulting mean mass budget is hence null and no addition of mass in the system is required. These particular jets have especially been considered for some years for flow control applications. They also display features that can become of interest to enhance heat exchanges, for example, for wall cooling issues. Synthetic jets can be generated through different mechanisms, such as acoustics by making use of a Helmholtz resonator or through the motion of a piston as in an experience mounted at Institut Pprime in France. The objective of this specific experiment is to understand how synthetic jets can enhance heat transfer in a multi-perforated configuration. As a complement to this experimental setup, large-eddy simulations are produced and analyzed in the present document to investigate the flow behavior as well as the impact of the synthetic jets on wall heat transfer. The experimental system considered here consists in a perforated heated plate, each perforation being above a cavity where a piston is used to control the synthetic jets. Placed in a wind tunnel test section, the device can be studied with a grazing flow and multiple operating points are available. The one considered here implies a grazing flow velocity of 12.8 m s−1, corresponding to a Mach number around 0.04, and a piston displacement of 22 mm peak-to-peak at a frequency of 12.8 Hz. These two latter parameters lead to a jet Reynolds number of about 830. A good agreement is found between numerical results and experimental data. The simulations are then used to provide a detailed understanding of the flow. Two main behaviors are found, depending on the considered mid-period. During the ejection phase, the flow transitions to turbulence and the formation of characteristic structures are observed; the plate is efficiently cooled. During the suction phase, the main flow is stabilized; the heat enhancement is particularly efficient in the hole wakes but not between them, leading to a heterogeneous temperature field.


Author(s):  
Angela Wu ◽  
Seunghwan Keum ◽  
Volker Sick

In this study, the effects of the thermal boundary conditions at the engine walls on the predictions of Large-Eddy Simulations (LES) of a motored Internal Combustion Engine (ICE) were examined. Two thermal boundary condition cases were simulated. One case used a fixed, uniform wall temperature, which is typically used in conventional LES modeling of ICEs. The second case utilized a Conjugate Heat Transfer (CHT) modeling approach to obtain temporally and spatially varying wall temperature. The CHT approach solves the coupled heat transfer problem between fluid and solid domains. The CHT case included the solid valves, piston, cylinder head, cylinder liner, valve seats, and spark plug geometries. The simulations were validated with measured bulk flow, near-wall flow, surface temperature, and surface heat flux. The LES quality of both simulations was also discussed. The CHT results show substantial spatial, temporal, and cyclic variability of the wall heat transfer. The surface temperature dynamics obtained from the CHT model compared well with measurements during the compression stroke, but the absolute magnitude was 5 K (or 1.4%) off and the prediction of the drop in temperature after top dead center suffered from temporal resolution limitations. Differences in the predicted flow and temperature fields between the uniform surface temperature and CHT simulations show the impact of the surface temperature on bulk behavior.


Author(s):  
Oana Marin ◽  
Elia Merzari ◽  
Aleks Obabko ◽  
Andres Alvarez ◽  
Stephen Lomperski ◽  
...  

Thermal striping is of particular significance in nuclear reactor applications, primarily in sodium cooled fast reactors. The mixing chamber of the upper plenum of a nuclear reactor can be subjected to thermal striping unless designed such that the coolant is sufficiently mixed prior to reaching the top wall of the upper plenum. In order to conduct a systematic analysis of this phenomenon a simplified experimental set-up was designed and built at Argonne National Laboratory. In a parallel effort a similar simulation was conducted using the spectral-element code Nek5000. The set-up consists of two turbulent jets entering a rectangular tank via two hexagonal inlets, the interesting phenomena being the mixing within the tank. Two different inlet geometries were studied previously, both experimentally and via high-fidelity large-eddy simulations reporting various turbulent statistical quantities. To further assess the flow behavior we hereby perform a Proper Orthogonal Decomposition (POD) to identify the most dominant energetic modes and quantify their impact on the top wall of the upper plenum. The POD analysis of the experimental data in both inlet geometrical configurations is compared with LES and presented to highlight the impact of geometry on the velocity and thermal fields. We find a qualitative coherence between both simulation and experiment, characterized by a strong backflow in the weakly stable geometry, as indicated by the first mode, and the presence of three stagnation points in the strongly stable geometry setup. Also we identify a pairing of modes 1 and 3 with higher frequency than the second mode. This pairing is opposite in the two flow configurations leading to a faster decay of one of the jets in one case and a stable flow in the other.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 772
Author(s):  
Jean-Christophe Hoarau ◽  
Paola Cinnella ◽  
Xavier Gloerfelt

Transonic flows of a molecularly complex organic fluid through a stator cascade were investigated by means of large eddy simulations (LESs). The selected configuration was considered as representative of the high-pressure stages of high-temperature Organic Rankine Cycle (ORC) axial turbines, which may exhibit significant non-ideal gas effects. A heavy fluorocarbon, perhydrophenanthrene (PP11), was selected as the working fluid to exacerbate deviations from the ideal flow behavior. The LESs were carried out at various operating conditions (pressure ratio and total conditions at inlet), and their influence on compressibility and viscous effects is discussed. The complex thermodynamic behavior of the fluid generates highly non-ideal shock systems at the blade trailing edge. These are shown to undergo complex interactions with the transitional viscous boundary layers and wakes, with an impact on the loss mechanisms and predicted loss coefficients compared to lower-fidelity models relying on the Reynolds-averaged Navier–Stokes (RANS) equations.


2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Paulina Pianko-Oprych ◽  
Zdzisław Jaworski

AbstractThe main purpose of the paper is to apply the large eddy simulations (LES) technique and to verify its use as a predicting tool for turbulent liquid-liquid flow in an SMX static mixer. LES modeling was carried out using the Smagorinsky-Lilly model of the turbulent subgrid viscosity for the Reynolds number of 5000 and 10000. The continuous phase was water and the dispersed phase was silicon oil. The investigation covers the effects of the density ratio between the phases. Three different cases of liquid densities were considered. The dispersed phase concentration distribution in the mixer cross-sections was compared with the corresponding time averaged results obtained formerly for the same configuration in a steady-state simulation using the standard RANS approach with the k-ɛ model. The dependency of the standard deviation of the dispersed phase concentration on the distance from the mixer inlet and the impact of the centrifugal force on the phase concentration distribution were investigated. The presented results for the SMX static mixer confirm conclusions of previous studies by Jaworski et al. (2006) obtained for a Kenics static mixer and show less a pronounced influence of the centrifugal force on the phase concentration distribution of the LES results in comparison to the RANS case.


Sign in / Sign up

Export Citation Format

Share Document