FIRST-PRINCIPLES CALCULATIONS OF ELECTRON AND PHONON TRANSPORT PROPERTIES IN SINGLE CRYSTALS

Author(s):  
Gang Chen ◽  
Bolin Liao ◽  
Sangyeop Lee ◽  
Jiawei Zhou
2018 ◽  
Vol 20 (12) ◽  
pp. 123014 ◽  
Author(s):  
Cong Wang ◽  
Guangqian Ding ◽  
Xuming Wu ◽  
Shasha Wei ◽  
Guoying Gao

2017 ◽  
Vol 138 ◽  
pp. 419-425 ◽  
Author(s):  
Yongqiang Jiang ◽  
Shuang Cai ◽  
Yi Tao ◽  
Zhiyong Wei ◽  
Kedong Bi ◽  
...  

2021 ◽  
Author(s):  
H. R. Mahida ◽  
Deobrat Singh ◽  
Yogesh Sonvane ◽  
Sanjeev K. Gupta ◽  
P. B. Thakor ◽  
...  

In the present study, we have investigated the structural, electronic, and charge transport properties of pristine, hydrogenated, and oxidized Si2BN monolayers via first-principles calculations based on density functional theory (DFT).


Author(s):  
Shun Song ◽  
Jian Gong ◽  
Xiangwei Jiang ◽  
Shenyuan Yang

We systematically study the influence of interface configuration and strain on the electronic and transport properties of lateral MoS2/graphene heterostructures by first-principles calculations and quantum transport simulations.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Can Cao ◽  
Mengqiu Long ◽  
Xiancheng Mao

We performed the first-principles calculations to investigate the spin-dependent electronic transport properties of zigzag-edged germanium nanoribbons (ZGeNRs). We choose of ZGeNRs with odd and even widths of 5 and 6, and the symmetry-dependent transport properties have been found, although theσmirror plane is absent in ZGeNRs. Furthermore, even-Nand odd-NZGeNRs have very different current-voltage relationships. We find that the even 6-ZGeNR shows a dual spin-filter effect in antiparallel (AP) magnetism configuration, but the odd 5-ZGeNR behaves as conventional conductors with linear current-voltage dependence. It is found that when the two electrodes are in parallel configuration, the 6-ZGeNR system is in a low resistance state, while it can switch to a much higher resistance state when the electrodes are in AP configuration, and the magnetoresistance of 270% can be observed.


1998 ◽  
Vol 527 ◽  
Author(s):  
O. Schneeweiss ◽  
I. Turek ◽  
J. Čermák ◽  
P. Lejček

ABSTRACTLocation of diffused 57Co atoms in single crystals, bicrystals and polycrystals of pure iron and Fe72Al28alloy were investigated by means of emission Mössbauer spectroscopy. To interpret the results, first principles calculations of iron atom magnetic moments and hyper-fine field were carried out. From comparison of M6ssbauer spectra of single crystals with those of bicrystals and polycrystals, an information about grain boundary positions occupied by diffusing atoms is obtained. It is shown that about 5% of the diffusing atoms at the {112} grain boundary of iron are located at the positions either having impurity atoms in the nearest neighbourhood or characterized by larger atomic spacing in comparison with the bulk. In the Fe72Al28 a dominating portion of diffusing atoms have different surrounding than in grain volume. An enrichment of grain boundaries by aluminum could explain their hyperfine parameters.


Sign in / Sign up

Export Citation Format

Share Document