Entropy Generation in a Viscoelastic Fluid Squeezed and Extruded Between Two Parallel Plates

Author(s):  
Saddam Hossain Mullick ◽  
P. Kaushik ◽  
Pranab Kumar Mondal ◽  
Pranab Kumar Kundu
2016 ◽  
Vol 139 (2) ◽  
Author(s):  
P Kaushik ◽  
Pranab Kumar Mondal ◽  
Sukumar Pati ◽  
Suman Chakraborty

This study investigates the unsteady heat transfer and entropy generation characteristics of a non-Newtonian fluid, squeezed and extruded between two parallel plates. In an effort to capture the underlying thermo-hydrodynamics, the power-law model is used here to describe the constitutive behavior of the non-Newtonian fluid. The results obtained from the present analysis reveal the intricate interplay between the fluid rheology and the squeezing dynamics, toward altering the Nusselt number and Bejan number characteristics. Findings from this study may be utilized to design optimal process parameters for enhanced thermodynamic performance of engineering systems handling complex fluids undergoing simultaneous extrusion and squeezing.


2017 ◽  
Vol 41 (4) ◽  
pp. 593-607
Author(s):  
Muharrem Imal ◽  
Coskun Ozalp ◽  
Bulent Yaniktepe ◽  
Mohammed Mehdi-Rashidi ◽  
Ertac Hurdogan

This paper reports the entropy generation of a two-dimensional, non-isothermal, steady, hydrodynamically and thermally fully-developed flow of an incompressible, non-Newtonian shear thinning fluid between two infinite parallel plates. The inelastic fluid is modeled by a two parameter Carreau constitutive equation with an exponential temperature dependence of viscosity. Temperature dependence of the fluid is modeled through Arrhenius law. Momentum and energy balance equations, which govern the flow, are coupled, and this nonlinear boundary value problem is solved numerically using a Pseudospectral method based on the Chebyshev polynomials. The effect of various flow controlling parameters on velocity, temperature and entropy generation is analyzed. The results indicated that Brinkman number and activation energy have opposite effects on entropy generation due to heat transfer. In contrast to the power-law index, an increase in the material time constant results in a decrease in the Bejan Number.


Energy ◽  
2008 ◽  
Vol 33 (7) ◽  
pp. 1169-1178 ◽  
Author(s):  
F. Ben Nejma ◽  
A. Mazgar ◽  
N. Abdallah ◽  
K. Charrada

Author(s):  
Pranab K Mondal ◽  
Harshad Gaikwad ◽  
Pranab Kumar Kundu ◽  
Somchai Wongwises

The influence of viscous dissipation on forced convective heat transfer and entropy generation rate in the conduction limit for a variable-viscosity flow between asymmetrically heated parallel plates is studied in an analytical framework consistent with perturbation method. The study considers a flow of Newtonian fluid under the simultaneous action of an applied pressure gradient and an axial movement of the upper plate. The present study emphasizes on the effect of dissipative heat produced by the movable upper plate as well as viscous heating generated due to applied pressure gradient on the underlying thermo-hydrodynamic transport. A few non-dimensional parameters such as dimensionless upper plate velocity, degree of asymmetry parameter and Brinkman number have been defined and their influential role on the variation of temperature profile, the Nusselt number and entropy generation number has been discussed in detail. The study shows that the variation of Nusselt number exhibits an unbounded swing, which, in turn, leads to appearance of the point of singularities at some cases of asymmetrical plate heating. Finally, the source of appearance of point of singularities has been discussed in view of the energy balance, and from the second-law analysis of thermodynamics.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Rajkumar Sarma ◽  
Pranab Kumar Mondal

We focus on the entropy generation minimization for the flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of applied pressure gradient, interfacial slip, and conjugate heat transfer. We use the simplified Phan–Thien–Tanner model (s-PTT) to represent the rheological behavior of the viscoelastic fluid. Using thermal boundary conditions of the third kind, we solve the transport equations analytically to obtain the velocity and temperature distributions in the flow field, which are further used to calculate the entropy generation rate in the analysis. In this study, the influential role of the following dimensionless parameters on entropy generation rate is examined: the viscoelastic parameter (εDe2), slip coefficient (k¯), channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi) and Peclet number (Pe). We show that there exists a particular value of the abovementioned parameters that lead to a minimum entropy generation rate in the system. We believe the results of this analysis could be of helpful in the optimum design of microfluidic system/devices typically used in thermal management, such as micro-electronic devices, microreactors, and microheat exchangers.


Sign in / Sign up

Export Citation Format

Share Document