MATHEMATICAL MODELLING OF HEAT EXCHANGERS

Author(s):  
A. N. Karayannis ◽  
Nicos C. Markatos
2011 ◽  
Vol 32 (1) ◽  
pp. 7-19 ◽  
Author(s):  
Dawid Taler ◽  
Marcin Trojan ◽  
Jan Taler

Mathematical modelling of tube heat exchangers with complex flow arrangement General principles of mathematical modelling of transient heat transfer in cross-flow tube heat exchangers with complex flow arrangements which allow a simulation of multipass heat exchangers with many tube rows are presented. First, a system of differential equations for the transient temperature of both fluids and the tube wall with appropriate boundary and initial conditions is formulated. Two methods for modelling heat exchangers are developed using the finite difference method and finite volume method. A numerical model of multipass steam superheater with twelve passes is presented. The calculation results are compared with the experimental data.


Author(s):  
C. H. Carter ◽  
J. E. Lane ◽  
J. Bentley ◽  
R. F. Davis

Silicon carbide (SiC) is the generic name for a material which is produced and fabricated by a number of processing routes. One of the three SiC materials investigated at NCSU is Norton Company's NC-430, which is produced by reaction-bonding of Si vapor with a porous SiC host which also contains free C. The Si combines with the free C to form additional SiC and a second phase of free Si. Chemical vapor deposition (CVD) of CH3SiCI3 onto a graphite substrate was employed to produce the second SiC investigated. This process yielded a theoretically dense polycrystalline material with highly oriented grains. The third SiC was a pressureless sintered material (SOHIO Hexoloy) which contains B and excess C as sintering additives. These materials are candidates for applications such as components for gas turbine, adiabatic diesel and sterling engines, recouperators and heat exchangers.


2012 ◽  
Author(s):  
Aleksandras Krylovas ◽  
Natalja Kosareva ◽  
Olga Navickiene

Sign in / Sign up

Export Citation Format

Share Document