HEAT TRANSFER EXPERIMENTAL RESEARCH FOR TURBULENT GAS FLOW IN PIPES AT HIGH TEMPERATURE DIFFERENCE BETWEEN WALL AND BULK FLUID TEMPERATURE

2019 ◽  
Author(s):  
B. S. Petukhov ◽  
V.V. Kirillov ◽  
V.N. Maidanik
1971 ◽  
Vol 93 (3) ◽  
pp. 290-296 ◽  
Author(s):  
J. R. Green ◽  
E. G. Hauptmann

In an attempt to determine the heat transfer rates in forced flow normal to a heated cylinder and to provide some insight into the mechanisms in heat transfer in the critical region, heat transfer rates have been measured for both free and forced flow of supercritical carbon dioxide normal to a horizontal heated cylinder. The 0.006-in-dia cylinder was held at various constant temperatures by a feedback circuit. The effects of bulk fluid temperature, bulk fluid pressure, and surface temperature were studied for a range of bulk fluid temperatures and pressures from 0.8 to 1.4 times the critical temperature and pressure, and free-stream velocities from 0 to 3 fps. The temperature difference between the heated cylinder and the bulk fluid was varied from 1 to 300 deg F. Several photographs of the flow field are presented. In a supercritical fluid the heat transfer rate increases smoothly and monotonically with increasing temperature difference, increasing velocity, and increasing pressure. In fluid with the bulk temperature below the pseudo-critical temperature the heat transfer coefficient shows large peaks when the cylinder temperature is near the pseudo-critical temperature. The heat transfer coefficient decreases with increasing temperature difference when the bulk fluid temperature is above the pseudo-critical temperature. Supercritical forced convection does not exhibit the characteristic maximum in heat transfer rate shown in forced-flow nucleate boiling. Heat transfer rates at larger temperature differences are very similar in forced-flow film boiling and supercritical forced-flow heat transfer. With this horizontal constant-temperature cylinder, no “bubble-like” or “boiling-like” mechanisms of heat transfer were observed in supercritical free or forced convection.


1998 ◽  
Vol 120 (3) ◽  
pp. 784-787 ◽  
Author(s):  
Shuichi Torii ◽  
Wen-Jei Yang

A numerical study is performed to investigate thermal transport phenomena in turbulent gas flow through a tube heated at high temperature difference and uniform wall temperature. A k-ε turbulence model is employed to determine the turbulent viscosity and the turbulent kinetic energy. The turbulent heat flux is expressed by a Boussinesq approximation in which the eddy diffusivity of the heat is determined by a t2-ε, heat transfer model. The governing boundary layer equations are discretized by means of a control-volume finite difference technique and are numerically solved using a marching procedure. It is disclosed from the study that (i) laminarization takes place in a turbulent gas flow through a pipe with high uniform wall temperature just as it does in a pipe with high unform wall heat flux, and (ii) the flow in a tube heated to high temperature difference and uniform wall temperature is laminarized at a lower heat than that under the uniform heat flux condirion.


Author(s):  
Kyohei Isobe ◽  
Chungpyo Hong ◽  
Yutaka Asako ◽  
Ichiro Ueno

Numerical simulations were performed to obtain for heat transfer characteristics of turbulent gas flow in micro-tubes with constant wall temperature. The numerical methodology was based on Arbitrary-Lagrangian-Eulerinan (ALE) method to solve compressible momentum and energy equations. The Lam-Bremhorst Low-Reynolds number turbulence model was employed to evaluate eddy viscosity coefficient and turbulence energy. The tube diameter ranges from 100 μm to 400 μm and the aspect ratio of the tube diameter and the length is fixed at 200. The stagnation temperature is fixed at 300 K and the computations were done for wall temperature, which ranges from 305 K to 350 K. The stagnation pressure was chosen in such a way that the flow is in turbulent flow regime. The obtained Reynolds number ranges widely up to 10081 and the Mach number at the outlet ranges from 0.1 to 0.9. The heat transfer rates obtained by the present study are higher than those of the incompressible flow. This is due to the additional heat transfer near the micro-tube outlet caused by the energy conversion into kinetic energy.


1999 ◽  
Vol 121 (5) ◽  
pp. 514-520 ◽  
Author(s):  
R. B. Roemer

Previous models of countercurrent blood vessel heat transfer have used one of two, different, equally valid but previously unreconciled formulations, based either on: (1) the difference between the arterial and venous vessels’ average wall temperatures, or (2) the difference between those vessels’ blood bulk fluid temperatures. This paper shows that these two formulations are only equivalent when the four, previously undefined, “convective heat transfer coefficients” that are used in the bulk temperature difference formulation (two coefficients each for the artery and vein) have very specific, problem-dependent relationships to the standard convective heat transfer coefficients. (The average wall temperature formulation uses those standard coefficients correctly.) The correct values of these bulk temperature difference formulation “convective heat transfer coefficients” are shown to be either: (1) specific functions of (a) the tissue conduction resistances, (b) the standard convective heat transfer coefficients, and (c) the independently specified bulk arterial, bulk venous and tissue temperatures, or (2) arbitrary, user defined values. Thus, they are generally not equivalent to the standard convective heat transfer coefficients that are regularly used, and must change values depending on the blood and tissue temperatures. This dependence can significantly limit the convenience and usefulness of the bulk temperature difference formulations.


1969 ◽  
Vol 16 (4) ◽  
pp. 400-403 ◽  
Author(s):  
V. M. Buznik ◽  
Z. I. Geller ◽  
A. K. Pimenov

2018 ◽  
Vol 1129 ◽  
pp. 012022
Author(s):  
A I Leontiev ◽  
S S Popovich ◽  
Y A Vinogradov ◽  
M M Strongin

Author(s):  
Pei-Xue Jiang ◽  
Yi-Jun Xu ◽  
Run-Fu Shi ◽  
S. He

Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube with a diameter of 0.948 mm was investigated experimentally and numerically. The local heat transfer coefficients, bulk fluid temperatures and wall temperatures were measured and presented. The effects of inlet fluid temperature, fluid pressure, mass flow rate, heat flux and wall thickness on the convection heat transfer in the mini tube were investigated. The experimental results were compared with calculated results using well-known correlations and numerical simulations. The results showed that the variable thermophysical properties of supercritical CO2 significantly influenced the convection heat transfer in the vertical mini tube and that for the studied conditions the influence of the wall thickness on the convection heat transfer in the mini tube was not great. For bulk fluid temperatures higher than the pseudo-critical temperature, the simulation results and the correlation results for the convection heat transfer coefficients in the mini tube corresponded well to the experimentally measured results.


2016 ◽  
Vol 798 ◽  
pp. 299-349 ◽  
Author(s):  
Bo Sun ◽  
Sudheer Tenneti ◽  
Shankar Subramaniam ◽  
Donald L. Koch

Fluctuations in the gas-phase velocity can contribute significantly to the total gas-phase kinetic energy even in laminar gas–solid flows as shown by Mehrabadi et al. (J. Fluid Mech., vol. 770, 2015, pp. 210–246), and these pseudo-turbulent fluctuations can also enhance heat transfer in gas–solid flow. In this work, the pseudo-turbulent heat flux arising from temperature–velocity covariance, and average fluid-phase conduction during convective heat transfer in a gas–solid flow are quantified and modelled over a wide range of mean slip Reynolds number and solid volume fraction using particle-resolved direct numerical simulations (PR-DNS) of steady flow through a random assembly of fixed isothermal monodisperse spherical particles. A thermal self-similarity condition on the local excess temperature developed by Tenneti et al. (Intl J. Heat Mass Transfer, vol. 58, 2013, pp. 471–479) is used to guarantee thermally fully developed flow. The average gas–solid heat transfer rate for this flow has been reported elsewhere by Sun et al. (Intl J. Heat Mass Transfer, vol. 86, 2015, pp. 898–913). Although the mean velocity field is homogeneous, the mean temperature field in this thermally fully developed flow is inhomogeneous in the streamwise coordinate. An exponential decay model for the average bulk fluid temperature is proposed. The pseudo-turbulent heat flux that is usually neglected in two-fluid models of the average fluid temperature equation is computed using PR-DNS data. It is found that the transport term in the average fluid temperature equation corresponding to the pseudo-turbulent heat flux is significant when compared to the average gas–solid heat transfer over a significant range of solid volume fraction and mean slip Reynolds number that was simulated. For this flow set-up a gradient-diffusion model for the pseudo-turbulent heat flux is found to perform well. The Péclet number dependence of the effective thermal diffusivity implied by this model is explained using a scaling analysis. Axial conduction in the fluid phase, which is often neglected in existing one-dimensional models, is also quantified. As expected, it is found to be important only for low Péclet number flows. Using the exponential decay model for the average bulk fluid temperature, a model for average axial conduction is developed that verifies standard assumptions in the literature. These models can be used in two-fluid simulations of heat transfer in fixed beds. A budget analysis of the mean fluid temperature equation provides insight into the variation of the relative magnitude of the various terms over the parameter space.


2010 ◽  
Vol 2010 (0) ◽  
pp. 253-254
Author(s):  
Kyohei ISOBE ◽  
Chungpyo HONG ◽  
Ichiro UENO ◽  
Yutaka ASAKO ◽  
Koichi SUZUKI

1970 ◽  
Vol 92 (3) ◽  
pp. 490-497 ◽  
Author(s):  
J. W. Ackerman

Investigations of heat transfer to supercritical pressure fluids have been going on for some time, and correlations have been developed for both free and forced-convection conditions. In these investigations, unpredictable heat transfer performance has sometimes been observed when the pseudocritical temperature of the fluid is between the temperature of the bulk fluid and that of the heated surface. The unusual performance has been attributed to many causes, but one for which more evidence is being collected is that of a pseudofilm-boiling process similar to film boiling which occurs at subcritical pressures. This paper, which is an extension of work reported earlier on forced-convection heat transfer to supercritical pressure water, presents experimental evidence which suggests that a pseudofilm-boiling phenomenon can occur in smooth-bore tubes. During the period from 1963–1966, tubes with ID’s from 0.37 to 0.96 in. were tested at pressures from 3300–6000 psia and at heat fluxes and mass velocities in the range of interest in steam-generator design. The effects of heat flux, mass velocity, tube diameter, pressure, and bulk fluid temperature on both the occurrence and characteristics of pseudofilm boiling are discussed. Results of a second series of tests conducted in 1967, which show that ribbed tubes suppress pseudofilm boiling at supercritical pressure much like they do film boiling at subcritical pressures, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document