DISTANCE AND SIMILARITY MEASURES FOR INTUITIONISTIC MULTIPLICATIVE PREFERENCE RELATION AND ITS APPLICATIONS

Author(s):  
Harish Garg
2011 ◽  
Vol 10 (06) ◽  
pp. 1111-1130 ◽  
Author(s):  
CUIPING WEI ◽  
XIJIN TANG

In this paper, we study group decision-making problems based on intuitionistic preference relations. By measuring the uncertain information of intuitionistic preference relations and the average similarity degree of one individual intuitionistic preference relation to the others, we propose a new approach to assess the relative importance weights of experts. The approach takes both the objective and subjective information of experts into consideration. We then integrate the weights of experts into the individual intuitionistic preference relations and develop a relative similarity method to derive the priorities of alternatives. The comparison analysis with other methods by two numerical examples illustrates the practicality and effectiveness of the proposed methods.


Author(s):  
A. V. Ponomarev

Introduction: Large-scale human-computer systems involving people of various skills and motivation into the information processing process are currently used in a wide spectrum of applications. An acute problem in such systems is assessing the expected quality of each contributor; for example, in order to penalize incompetent or inaccurate ones and to promote diligent ones.Purpose: To develop a method of assessing the expected contributor’s quality in community tagging systems. This method should only use generally unreliable and incomplete information provided by contributors (with ground truth tags unknown).Results:A mathematical model is proposed for community image tagging (including the model of a contributor), along with a method of assessing the expected contributor’s quality. The method is based on comparing tag sets provided by different contributors for the same images, being a modification of pairwise comparison method with preference relation replaced by a special domination characteristic. Expected contributors’ quality is evaluated as a positive eigenvector of a pairwise domination characteristic matrix. Community tagging simulation has confirmed that the proposed method allows you to adequately estimate the expected quality of community tagging system contributors (provided that the contributors' behavior fits the proposed model).Practical relevance: The obtained results can be used in the development of systems based on coordinated efforts of community (primarily, community tagging systems). 


2015 ◽  
Author(s):  
Kai M. Ting
Keyword(s):  

Author(s):  
B. Mathura Bai ◽  
N. Mangathayaru ◽  
B. Padmaja Rani ◽  
Shadi Aljawarneh

: Missing attribute values in medical datasets are one of the most common problems faced when mining medical datasets. Estimation of missing values is a major challenging task in pre-processing of datasets. Any wrong estimate of missing attribute values can lead to inefficient and improper classification thus resulting in lower classifier accuracies. Similarity measures play a key role during the imputation process. The use of an appropriate and better similarity measure can help to achieve better imputation and improved classification accuracies. This paper proposes a novel imputation measure for finding similarity between missing and non-missing instances in medical datasets. Experiments are carried by applying both the proposed imputation technique and popular benchmark existing imputation techniques. Classification is carried using KNN, J48, SMO and RBFN classifiers. Experiment analysis proved that after imputation of medical records using proposed imputation technique, the resulting classification accuracies reported by the classifiers KNN, J48 and SMO have improved when compared to other existing benchmark imputation techniques.


2021 ◽  
Vol 40 (1) ◽  
pp. 235-250
Author(s):  
Liuxin Chen ◽  
Nanfang Luo ◽  
Xiaoling Gou

In the real multi-criteria group decision making (MCGDM) problems, there will be an interactive relationship among different decision makers (DMs). To identify the overall influence, we define the Shapley value as the DM’s weight. Entropy is a measure which makes it better than similarity measures to recognize a group decision making problem. Since we propose a relative entropy to measure the difference between two systems, which improves the accuracy of the distance measure.In this paper, a MCGDM approach named as TODIM is presented under q-rung orthopair fuzzy information.The proposed TODIM approach is developed for correlative MCGDM problems, in which the weights of the DMs are calculated in terms of Shapley values and the dominance matrices are evaluated based on relative entropy measure with q-rung orthopair fuzzy information.Furthermore, the efficacy of the proposed Gq-ROFWA operator and the novel TODIM is demonstrated through a selection problem of modern enterprises risk investment. A comparative analysis with existing methods is presented to validate the efficiency of the approach.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5176
Author(s):  
Guannan Li ◽  
Ying Li ◽  
Bingxin Liu ◽  
Peng Wu ◽  
Chen Chen

Polarimetric synthetic aperture radar is an important tool in the effective detection of marine oil spills. In this study, two cases of Radarsat-2 Fine mode quad-polarimetric synthetic aperture radar datasets are exploited to detect a well-known oil seep area that collected over the Gulf of Mexico using the same research area, sensor, and time. A novel oil spill detection scheme based on a multi-polarimetric features model matching method using spectral pan-similarity measure (SPM) is proposed. A multi-polarimetric features curve is generated based on optimal polarimetric features selected using Jeffreys–Matusita distance considering its ability to discriminate between thick and thin oil slicks and seawater. The SPM is used to search for and match homogeneous unlabeled pixels and assign them to a class with the highest similarity to their spectral vector size, spectral curve shape, and spectral information content. The superiority of the SPM for oil spill detection compared to traditional spectral similarity measures is demonstrated for the first time based on accuracy assessments and computational complexity analysis by comparing with four traditional spectral similarity measures, random forest (RF), support vector machine (SVM), and decision tree (DT). Experiment results indicate that the proposed method has better oil spill detection capability, with a higher average accuracy and kappa coefficient (1.5–7.9% and 1–25% higher, respectively) than the four traditional spectral similarity measures under the same computational complexity operations. Furthermore, in most cases, the proposed method produces valuable and acceptable results that are better than the RF, SVM, and DT in terms of accuracy and computational complexity.


Author(s):  
Zdenko Takáč ◽  
Humberto Bustince ◽  
Javier Fernandez ◽  
Graçaliz Dimuro ◽  
Tiago Asmus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document