Application of the Resource-Ratio Theory in Analyzing Structural Changes of Marine Phytoplankton Communities

2020 ◽  
Vol 22 (1) ◽  
pp. 7-24
Author(s):  
A. B. Zotov
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Manon Rocco ◽  
Erin Dunne ◽  
Maija Peltola ◽  
Neill Barr ◽  
Jonathan Williams ◽  
...  

AbstractBenzene, toluene, ethylbenzene and xylenes can contribute to hydroxyl reactivity and secondary aerosol formation in the atmosphere. These aromatic hydrocarbons are typically classified as anthropogenic air pollutants, but there is growing evidence of biogenic sources, such as emissions from plants and phytoplankton. Here we use a series of shipborne measurements of the remote marine atmosphere, seawater mesocosm incubation experiments and phytoplankton laboratory cultures to investigate potential marine biogenic sources of these compounds in the oceanic atmosphere. Laboratory culture experiments confirmed marine phytoplankton are a source of benzene, toluene, ethylbenzene, xylenes and in mesocosm experiments their sea-air fluxes varied between seawater samples containing differing phytoplankton communities. These fluxes were of a similar magnitude or greater than the fluxes of dimethyl sulfide, which is considered to be the key reactive organic species in the marine atmosphere. Benzene, toluene, ethylbenzene, xylenes fluxes were observed to increase under elevated headspace ozone concentration in the mesocosm incubation experiments, indicating that phytoplankton produce these compounds in response to oxidative stress. Our findings suggest that biogenic sources of these gases may be sufficiently strong to influence atmospheric chemistry in some remote ocean regions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tahnee Manning ◽  
Arjun Venkatesh Thilagaraj ◽  
Dmitri Mouradov ◽  
Richard Piola ◽  
Clare Grandison ◽  
...  

Abstract Background Dinoflagellates are a ubiquitous and ecologically important component of marine phytoplankton communities, with particularly notable species including those associated with harmful algal blooms (HABs) and those that bioluminesce. High-throughput sequencing offers a novel approach compared to traditional microscopy for determining species assemblages and distributions of dinoflagellates, which are poorly known especially in Australian waters. Results We assessed the composition of dinoflagellate assemblages in two Australian locations: coastal temperate Port Phillip Bay and offshore tropical waters of Davies Reef (Great Barrier Reef). These locations differ in certain environmental parameters reflecting latitude as well as possible anthropogenic influences. Molecular taxonomic assessment revealed more species than traditional microscopy, and it showed statistically significant differences in dinoflagellate assemblages between locations. Bioluminescent species and known associates of HABs were present at both sites. Dinoflagellates in both areas were mainly represented by the order Gymnodiniales (66%—82% of total sequence reads). In the warm waters of Davies Reef, Gymnodiniales were equally represented by the two superclades, Gymnodiniales sensu stricto (33%) and Gyrodinium (34%). In contrast, in cooler waters of Port Phillip Bay, Gymnodiniales was mainly represented by Gyrodinium (82%). In both locations, bioluminescent dinoflagellates represented up to 0.24% of the total sequence reads, with Protoperidinium the most abundant genus. HAB-related species, mainly represented by Gyrodinium, were more abundant in Port Phillip Bay (up to 47%) than at Davies Reef (28%), potentially reflecting anthropogenic influence from highly populated and industrial areas surrounding the bay. The entire assemblage of dinoflagellates, as well as the subsets of HAB and bioluminescent species, were strongly correlated with water quality parameters (R2 = 0.56–0.92). Significant predictors differed between the subsets: HAB assemblages were explained by salinity, temperature, dissolved oxygen, and total dissolved solids; whereas, bioluminescent assemblages were explained only by salinity and dissolved oxygen, and had greater variability. Conclusion High-throughput sequencing and genotyping revealed greater diversity of dinoflagellate assemblages than previously known in both subtropical and temperate Australian waters. Significant correlations of assemblage structure with environmental variables suggest the potential for explaining the distribution and composition of both HAB species and bioluminescent species.


1995 ◽  
Vol 32 (4) ◽  
pp. 63-75 ◽  
Author(s):  
R. Riegman

A general increase in nutrient discharges during the last few decades has caused various changes in the algal community structure along the European continental coast. Coincidentally and maybe consequently, the foodweb structure and functioning has altered in local areas causing various phenomena like oxygen depletion, mortality of groups of organisms, foam on beaches, and an increase in the productivity of benthic communities and some commercial fish species. The observed increases in algal biomass and shifts in species composition are discussed in relation to the involved key mechanisms: resource competition and selective grazing. Along the Dutch coastal zone of the North Sea eutrophication has caused a doubling of the yearly averaged algal biomass during the past three decades. The sudden appearance of Phaeocystis summer blooms coincided with a shift from P-limitation towards N-limitation in the Dutch coastal area due to a stronger increase in P-discharge relative to the increase in N-discharge. Competition experiments in continuous cultures showed Phaeocystis to become dominant under N-limitation. Additionally, the large Phaeocystis colonies, which can reach a diameter up to one centimetre, escape from microzooplankton grazing. A computer model is presented which demonstrates a shift from bottom-up towards top-down control if the pelagic environment becomes eutrophicated. Implementation of this concept in a size-differential phytoplankton control model generates the prediction that algal blooms are dominated by species that escape from grazing by those zooplankton species which have a high potential numerical response. In marine environments these are microzooplankton species. These organisms mainly feed on cyanobacteria, prochlorophytes and some nano-algal species. One of the consequences for foodweb structure and the carbon fluxes in marine foodwebs is that eutrophication will lead to the dominance of poorly edible algal species. Eutrophication favours the downward transport of carbon and nutrients towards the sediments not only due to higher algal biomasses but also as a consequence of a shift towards larger algal species with higher sedimentation characteristics. An example is given how these new insights can be used for water quality management purposes.


Biology ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 42
Author(s):  
Vojsava Gjoni ◽  
Douglas Stewart Glazier

Recently, several studies have reported relationships between the abundance of organisms in an ecological community and their mean body size (called cross-community scaling relationships: CCSRs) that can be described by simple power functions. A primary focus of these studies has been on the scaling exponent (slope) and whether it approximates −3/4, as predicted by Damuth’s rule and the metabolic theory in ecology. However, some CCSR studies have reported scaling exponents significantly different from the theoretical value of −3/4. Why this variation occurs is still largely unknown. The purpose of our commentary is to show the value of examining both the slopes and elevations of CCSRs and how various ecological factors may affect them. As a heuristic exercise, we reanalyzed three published data sets based on phytoplankton, rodent, and macroinvertebrate assemblages that we subdivided according to three distinctly different ecological factors (i.e., climate zone, season, and trophic level). Our analyses reveal significant variation in either or both the CCSR slopes and elevations for marine phytoplankton communities across climate zones, a desert rodent community across seasons, and saltwater lagoon macroinvertebrate communities across trophic levels. We conclude that achieving a comprehensive understanding of abundance-size relationships at the community level will require consideration of both slopes and elevations of these relationships and their possible variation in different ecological contexts.


Author(s):  
A.S. Jung ◽  
R. Bijkerk ◽  
H.W. Van Der Veer ◽  
C.J.M. Philippart

Quantifying exchange of particulate matter between coastal and open waters is an important and often unresolved issue. Here, we apply phytoplankton order richness as an innovative marine tracer to identify the geographic position of a coastal exchange zone in the SE North Sea, including its variability in time and space. Previous observations on dynamics of suspended particulate matter accumulation resulted in a hypothesized boundary between coastal waters (including the Wadden Sea) and open North Sea waters, the so-called ‘line-of-no-return’. Our study along two transects (Terschelling, Noordwijk) in the Dutch coastal zone showed seasonality patterns in phytoplankton order richness, both for diatoms and flagellates. The coastal Wadden Sea was found to be clearly different from the open North Sea, implying that seasonality in Wadden Sea phytoplankton is at least partly driven by local environmental conditions. Seasonality in flagellates was found to be more uniform than seasonality in diatoms. Stations in the coastal North Sea to a distance of 10 km (Terschelling) to 20 km (Noordwijk) from the shore appeared to be at the inside of the ‘line-of-no-return’. Our findings indicate that this approach is a useful aid in exploring mixing of particulate matter between coastal and open waters and to study the responses of phytoplankton communities to environmental drivers.


2016 ◽  
Vol 113 (11) ◽  
pp. 2964-2969 ◽  
Author(s):  
Andrew D. Barton ◽  
Andrew J. Irwin ◽  
Zoe V. Finkel ◽  
Charles A. Stock

Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951–2000) and future (2051–2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec−1), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec−1. The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.


Nature ◽  
1972 ◽  
Vol 240 (5380) ◽  
pp. 356-358 ◽  
Author(s):  
STANLEY A. MOORE ◽  
ROBERT C. HARRISS

Sign in / Sign up

Export Citation Format

Share Document