A NUMERICAL STUDY ON UNSTEADY PRESSURE FLUCTUATIONS OF DAVIS GUN

Author(s):  
Han-Chang Cho ◽  
Jae-Kun Yoon ◽  
Hyun Dong Shin
2005 ◽  
Vol 127 (2) ◽  
pp. 363-371 ◽  
Author(s):  
Kitano Majidi

Computational fluid dynamics (CFD) analysis has been used to solve the unsteady three-dimensional viscous flow in the entire impeller and volute casing of a centrifugal pump. The results of the calculations are used to predict the impeller/volute interaction and to obtain the unsteady pressure distribution in the impeller and volute casing. The calculated unsteady pressure distribution is used to determine the unsteady blade loading. The calculations at the design point and at two off-design points are carried out with a multiple frame of reference and a sliding mesh technique is applied to consider the impeller/volute interaction. The results obtained show that the flow in the impeller and volute casing is periodically unsteady and confirm the circumferential distortion of the pressure distribution at the impeller outlet and in the volute casing. Due to the interaction between impeller blades and the tongue of the volute casing the flow is characterized by pressure fluctuations, which are strong at the impeller outlet and in the vicinity of the tongue. These pressure fluctuations are died away in the casing as the advancement angle increases. These reduced pressure fluctuations are spread to the discharge nozzle; the pressure fluctuations are also reflected to the impeller inlet and they affect the mass flow rate through the blade passages.


Author(s):  
Kitano Majidi

Computational Fluid Dynamics analysis has been used to solve the unsteady three-dimensional viscous flow in the entire impeller and volute casing of a centrifugal pump. The results of the calculations are used to predict the impeller/volute interaction and to obtain the unsteady pressure distribution in the impeller and volute casing. The calculated unsteady pressure distribution is used to determine the unsteady blade loading. The calculations at the design point and at two off-design points are carried out with a multiple frame of reference and a sliding mesh technique is applied to consider the impeller/volute interaction. The results obtained show that the flow in the impeller and volute casing is periodically unsteady and confirm the circumferential distortion of the pressure distribution at the impeller outlet and in the volute casing. Due to the interaction between impeller blades and the tongue of the volute casing the flow is characterized by pressure fluctuations, which are strong at the impeller outlet and in the vicinity of the tongue. These pressure fluctuations are died away in the casing as the advancement angle increases. These reduced pressure fluctuations are spread to the discharge nozzle; the pressure fluctuations are also reflected to the impeller inlet and they affect the mass flow rate through the blade passages.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012040
Author(s):  
A V Sentyabov ◽  
D V Platonov ◽  
A V Minakov ◽  
A S Lobasov

Abstract The paper presents a study of the instability of the precessing vortex core in the model of the draft tube of a hydraulic turbine. The study was carried out using numerical modeling using various approaches: URANS, RSM, LES. The best agreement with the experimental data was shown by the RSM and LES methods with the modelling of the runner rotation by the sliding mesh method. In the regime under consideration, the precessing vortex rope is subject to instability, which leads to reconnection of its turns and the formation of an isolated vortex ring. Reconnection of the vortex core leads to aperiodic and intense pressure fluctuations recorded on the diffuser wall.


1999 ◽  
Author(s):  
Yoko Takakura ◽  
Takayoshi Suzuki ◽  
Fumio Higashino ◽  
Masahiro Yoshida

2021 ◽  
Author(s):  
Changchang Wang ◽  
Guoyu Wang ◽  
Mindi Zhang ◽  
Qin Wu

Abstract This study experimentally investigates the statistics of wall-pressure fluctuations and their source inside attached cavitation under different cavity regimes. Experiments were conducted in the divergent section of a convergent-divergent channel at a constant Reynolds number of Re = 7.8 × 105 based on throat height, and different cavitation numbers σ = 1.18, 0.92, 0.82 and 0.78. Four high-frequency unsteady pressure transducers were flushed-mounted in the divergent section downstream the throat where cavitation develops to sample the unsteady pressure signals induced by cavity behaviors. Flow visualization and wall-pressure measurement in high frequency on the order of MHz were employed using a synchronizing sampling technique. Results are presented for sheet/cloud cavitating flows. Specifically, sheet cavitation with both inception shear layer and fully cavitated shear layer and cloud cavitation under re-entrant jet dominated shedding and shock wave dominated shedding are studied. Compared with re-entrant jet, the interactions between shock wave and cavity could induce pressure peaks with high magnitude within cavity, which will collapse the local vapor along its propagating path and reduce local void fraction. Furthermore, statistics analysis shows that within the cavity, wall-pressure fluctuations increase with the distance to cavity leading edge increase in the first half of cavity length, and the moments of the probability density distribution skewness and kurtosis factor decrease, indicating the asymmetry and intermittency of wall-pressure fluctuation signals decrease. In shock wave dominated cavity shedding condition, the skewness and kurtosis factor increase. These results can provide data to improve the accuracy of turbulence modeling in numerical simulation of turbulent cavitating flow.


2005 ◽  
Vol 71 (702) ◽  
pp. 467-473
Author(s):  
Mitsuru SHIMAGAKI ◽  
Tomoyuki HASHIMOTO ◽  
Mitsuo WATANABE ◽  
Satoshi HASEGAWA ◽  
Noriaki NAKAMURA ◽  
...  

Author(s):  
Jose´ Gonza´lez ◽  
Carlos Santolaria ◽  
Eduardo Blanco ◽  
Joaqui´n Ferna´ndez

Both experimental and numerical studies of the unsteady pressure field inside a centrifugal pump have been carried out. The unsteady patterns found for the pressure fluctuations are compared and a further and more detailed flow study from the numerical model developed will be presented in this paper. Measurements were carried out with pressure transducers installed on the volute shroud. At the same time, the unsteady pressure field inside the volute of a centrifugal pump has been numerically modelled using a finite volume commercial code and the dynamic variables obtained have been compared with the experimental data available. In particular, the amplitude of the fluctuating pressure field in the shroud side wall of the volute at the blade passing frequency is successfully captured by the model for a wide range of operating flow rates. Once the developed numerical model has shown its capability in describing the unsteady patterns experimentally measured, an explanation for such patterns is searched. Moreover, the possibilities of the numerical model can be extended to other sections (besides the shroud wall of the volute), which can provide plausible explanations for the dynamic interaction effects between the flow at the impeller exit and the volute tongue at different axial positions. The results of the numerical simulation are focused in the blade passing frequency in order to study the relative effect of the two main phenomena occurring at that frequency for a given position: the blade passing in front of the tongue and the wakes of the blades.


Sign in / Sign up

Export Citation Format

Share Document