SURFACE HEAT RELEASE OF HTPB-BASED FUELS IN OXYGEN RICH ENVIRONMENTS

Author(s):  
Grant A. Risha ◽  
George C. Harting ◽  
Kenneth K. Kuo ◽  
Arie Peretz ◽  
Donald E. Koch ◽  
...  
Keyword(s):  
Author(s):  
Natalie E. Theeuwes ◽  
Janet F. Barlow ◽  
Adriaan J. Teuling ◽  
C. Sue B. Grimmond ◽  
Simone Kotthaus

2014 ◽  
Vol 142 (9) ◽  
pp. 3081-3099 ◽  
Author(s):  
Jesse Norris ◽  
Geraint Vaughan ◽  
David M. Schultz

Moist idealized baroclinic-wave simulations show the development of precipitation bands from a zonally uniform initial midlatitude jet. For a frictionless lower boundary, and with no latent-heat release or surface heat and moisture fluxes, warm advection is strong and a bent-back warm front forms. Although a narrow vertical-velocity maximum forms within the area of synoptic-scale ascent near the triple point, only a wide warm-frontal band forms. As surface roughness length increases between simulations to that of an ocean then a land surface, warm advection is reduced and the cold front becomes stronger relative to the warm front. A separate narrow rainband forms along the cold front, which is more intense and farther removed from the wide warm-frontal band when roughness length is greater. In the simulation with roughness length appropriate to the ocean, after the narrow band decays, the precipitation becomes oriented along the warm conveyor belt in the warm sector. When latent-heat release is included, this warm-sector precipitation evolves into multiple bands, which eventually weaken with the cyclone. When surface heat and moisture fluxes are included, the ascent at the surface cold front stays strong and a well-defined cold front of the anafront variety persists through this mature stage. The surface precipitation remains in a single intense band along and ahead of the cold front. Therefore, strong surface heat and moisture fluxes inhibit multiple bands, but a simulation with lower sea surface temperature (SST) more closely resembles the simulation without surface heat and moisture fluxes, demonstrating that the detailed structure and evolution of precipitation banding is sensitive to SST.


2020 ◽  
pp. 35-42
Author(s):  
Yuri P. Zarichnyak ◽  
Vyacheslav P. Khodunkov

The analysis of a new class of measuring instrument for heat quantities based on the use of multi-valued measures of heat conductivity of solids. For example, measuring thermal conductivity of solids shown the fallacy of the proposed approach and the illegality of the use of the principle of ambiguity to intensive thermal quantities. As a proof of the error of the approach, the relations for the thermal conductivities of the component elements of a heat pump that implements a multi-valued measure of thermal conductivity are given, and the limiting cases are considered. In two ways, it is established that the thermal conductivity of the specified measure does not depend on the value of the supplied heat flow. It is shown that the declared accuracy of the thermal conductivity measurement method does not correspond to the actual achievable accuracy values and the standard for the unit of surface heat flux density GET 172-2016. The estimation of the currently achievable accuracy of measuring the thermal conductivity of solids is given. The directions of further research and possible solutions to the problem are given.


2001 ◽  
Vol 32 (4-6) ◽  
pp. 8
Author(s):  
E. A. Tairov ◽  
B. G. Pokusaev ◽  
D. A. Kazenin ◽  
S. A. Chizhikov ◽  
L. V. Syskov

Sign in / Sign up

Export Citation Format

Share Document