EFFECTS OF OUT OF PHASE AND INCLINATION ANGLES ON NATURAL CONVECTION HEAT TRANSFER FLOW OF AIR INSIDE A SINUSOIDAL CORRUGATED ENCLOSURE WITH SPATIALLY VARIABLE WALL TEMPERATURE

2011 ◽  
Vol 18 (5) ◽  
pp. 403-417 ◽  
Author(s):  
Salam Hadi Hussain ◽  
Rehab Noor Mohammed
Author(s):  
Anita Eisakhani ◽  
Xiujie Gao ◽  
Rob Gorbet ◽  
J. Richard Culham

Shape memory alloy (SMA) actuators are becoming increasingly popular in recent years due to their properties such as large recovery strain, silent actuation and low weight. Actuation in SMA wires depends strongly on temperature which is difficult to measure directly. Therefore, a reliable model is required to predict wire temperature, in order to control the transformation, and hence the actuation, and to avoid potential degradation due to overheating. The purpose of this investigation is to develop resistance and natural convection heat transfer models to predict temperature of current-carrying SMA wires using indirect temperature measurement methods. Experiments are performed on electrically heated 0.5 mm diameter NiTi SMA wire during phase transformation. Convection heat transfer experiments are performed in an environment of air that allows for control of the ambient pressure and in turn the thermofluid properties, such as density and viscosity. By measuring convective heat loss at a range of pressures, an empirical natural convection heat transfer correlation is determined for inclination angles from horizontal to vertical, in the Rayleigh number range of 2.6 × 10−8 ≤ RaD ≤ 6.0 × 10−1. Later, effect of temperature changes on electrical resistance and other control parameters such as applied external stress, wire inclination angle, wire length and ambient pressure is investigated. Based on experimental results a resistance model is developed for SMA wires that combined with the heat transfer correlation previously derived can be used to predict temperature and natural convection heat transfer coefficient of NiTi SMA wires during phase transformation for different wire lengths and inclination angles under various applied external stresses.


Author(s):  
Ammar I. Alsabery ◽  
Ishak Hashim ◽  
Ali J. Chamkha ◽  
Habibis Saleh ◽  
Bilal Chanane

Purpose This paper aims to study analytically and numerically the problem of transient natural convection heat transfer in a trapezoidal cavity with spatial side-wall temperature variation. Design/methodology/approach The governing equations subject to the initial and boundary conditions are solved numerically by the finite difference scheme consisting of the alternating direction implicit method and the tri-diagonal matrix algorithm. The left sloping wall of the cavity is heated to non-uniform temperature, and the right sloping wall is maintained at a constant cold temperature, while the horizontal walls are kept adiabatic. Findings It is shown that the heat transfer rate increases in non-uniform heating increments, whereby low wave number values are more affected by the convection. The best heat transfer enhancement results from larger side wall inclination angle; however, trapezoidal cavities require longer time compared to that of square to reach steady state. Originality/value The study of natural convection heat transfer in a trapezoidal cavity filled with nanofluid and heated by spatial side-wall temperature has not yet been undertaken. Thus, the authors of the present study believe that this work is valuable.


2014 ◽  
Vol 2 (2) ◽  
pp. 28-46
Author(s):  
Dhia Al-Deen H. Alwan

Natural convection heat transfer in an enclosure provided with inclined partitions to the two adiabatic sides, heated from the bottom with uniform heat flux and cooled from the top at constant temperature is studied experimentally and numerically in this work. The inclined partitions is well covered with an insulated material, so that, it can be assumed as parts of the adiabatic walls that places on. The governing parameter, Rayleigh number, is fixed in this work within 2.6x1011, so that the effect of inclination angles of the two side’s partitions can be investigated. The inclination angles of the two baffles range as (0o ≤ and ≥ 150o). In numerical solution the effect of turbulence is modelled using (k-ε) model. Some applications need to use the enclosed fluid layers as insulation, so that one purpose of this work deals with improve the insulating properties of fluid layers. The experimental and numerical works are done in 36 runs, grouped into 6 collections. Each collection with 6 runs done under a fixed inclination angle of one baffle and change the second baffle inclination angle to investigate the enclosure flow field and heat transfer. The result shows that a multi cells forms when the two baffles aboard to each other’s, which is a reason to make a separation between a cold, and hot circulation cells that forms in the enclosure and act as insulator. It is also conclude that for all cases, the long insulated baffle of any inclination angle causes a reduction to the heat exchange inside the enclosure due to the damping cause to the flow field. The less average Nusselt number occurs when the two angles are equals, and the worst case is (θ=β=90o). 


1986 ◽  
Vol 108 (2) ◽  
pp. 310-316 ◽  
Author(s):  
Y. S. Lin ◽  
R. G. Akins

The SIMPLER numerical method was used to calculate the pseudo-steady-state natural convection heat transfer to a fluid inside a closed vertical cylinder for which the boundary temperature was spatially uniform and the temperatures throughout the entire system were increasing at the same rate. (Pseudo-steady state is comparable to the steady-state problem for a fluid with uniform heat generation and constant wall temperature.) Stream functions, temperature contours, axial velocities, and temperature profiles are presented. The range of calculation was 0.25 < H/D < 2, Ra < 107, and Pr = 7. This range includes conduction to weak turbulence. A characteristic length defined as 6 × (volume)/(surface area) was used since it seemed to produce good regression results. The overall heat transfer for the convection-dominated range was found to be correlated by Nu = 0.519 Ra0.255, where the temperature difference for both the Nusselt and Rayleigh numbers was the center temperature minus the wall temperature. Correlations using other temperature differences are also presented for estimating the volumetric mean and minimum temperatures.


Sign in / Sign up

Export Citation Format

Share Document