AN EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER PERFORMANCE OF WAVY CHANNELS UNDER LAMINAR FLOW CONDITIONS: AN INTERFEROMETRIC STUDY

2020 ◽  
Vol 27 (6) ◽  
pp. 561-576
Author(s):  
Divya Haridas ◽  
Vijay Singh ◽  
Atul Srivastava
Author(s):  
A. Dominic ◽  
J. Sarangan ◽  
S. Suresh ◽  
V. S. Devah Dhanush

An experimental investigation on the heat transfer performance and pressure drop characteristics of thermally developing and hydrodynamically developed laminar flow of de-ionized (DI) water and 0.1%, 0.5%, and 0.8% concentrations of Al2O3/water nanofluid in wavy and straight minichannels was conducted. Reynolds number was varied from 700 to 1900 and two different heat fluxes of 45 kW/m2 and 65 kW/m2 were applied. The performance factor (PF) of water in wavy minichannels over their straight counterparts was higher than the nanofluids. Temperature distributions and general correlations of these minichannels are also presented.


2018 ◽  
Vol 32 (5) ◽  
pp. 411-425 ◽  
Author(s):  
Suvanjan Bhattacharyya ◽  
Ali Cemal Benim ◽  
Himadri Chattopadhyay ◽  
Arnab Banerjee

Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper we reported an advanced structure, the Piranha Pin Fin (PPF), for microchannel flow boiling. Fluid flow and heat transfer performance were evaluated in detail with HFE7000 as working fluid. Surface temperature, pressure drop, heat transfer coefficient and critical heat flux (CHF) were experimentally obtained and discussed. Furthermore, microchannels with different PPF geometrical configurations were investigated. At the same time, tests for different flow conditions were conducted and analyzed. It turned out that microchannel with PPF can realize high-heat flux dissipation with reasonable pressure drop. Both flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performance. This study provided useful reference for further PPF design in microchannel for flow boiling.


Sign in / Sign up

Export Citation Format

Share Document